NikitaErmolaev commited on
Commit
18f8771
1 Parent(s): 080e34c

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 250.47 +/- 18.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f178d5320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f178d53b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f178d5440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f178d54d0>", "_build": "<function ActorCriticPolicy._build at 0x7f4f178d5560>", "forward": "<function ActorCriticPolicy.forward at 0x7f4f178d55f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f178d5680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4f178d5710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f178d57a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f178d5830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f178d58c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f17922810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655067162.1339087, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAApgW+veNZnT/1mO6+Cvy6vhvw2Txjmbu9AAAAAAAAAAAA5Om89swnui4Lmzo1s5O1ZxFpur77t7kAAIA/AACAP2YksrwUlpK6bsuJuTo5WjWEVSK7FkvCtAAAgD8AAIA/Tc5hvXuikbpWaTC4nGsrs8caJbrpgkw3AACAPwAAgD9zwsC9XEt+ukvM4LcRWDiz2vDZuXRCAzcAAAAAAACAP4AZW77DjTc/qLRhO/F6YL4s9Bu9ss2TvQAAAAAAAAAA5uXmvfaIVrrVap+2/aaJM9EEnbuw+7E1AACAPwAAgD+zQIk9j+ZlumXYHbw7WMa18eyauZMFNTUAAAAAAAAAAPPahr2sQrs+Q4akO+peML5jlQw7wqPGvAAAAAAAAAAAgNcYPtT45T6Aodi9blBKvtvBgDxOo8i9AAAAAAAAAABmPk48j/ozuhJrSrviHxo3oR4Guz5cjLYAAIA/AACAP2YaXT3hoIy6ZlvROpoR/zPw9Dm7qNXyuQAAgD8AAIA/Zpi6PFJwvrnGEqK76e0kN0+GUzq1qJm2AACAPwAAgD8zdPs8FGSCuuAvwTrrQZI1kQm1unsJ4bkAAIA/AACAP4B3Qb5P3Z8+3ipMPtOgWL4/vg49fpIJPgAAAAAAAAAA8yqVvfYETbo285W7jZI6tm3s3Dqqbq46AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknpP5TQ+YUCUhpRSlIwBbJRN6AOMAXSUR0CY8BwoLG70dX2UKGgGaAloD0MInSrfMxJeXkCUhpRSlGgVTegDaBZHQJj2zRc/t6Z1fZQoaAZoCWgPQwgGE38U9WllQJSGlFKUaBVN6ANoFkdAmPjpHuqm0nV9lChoBmgJaA9DCEK0VrQ5RWRAlIaUUpRoFU3oA2gWR0CY+aWl/H5rdX2UKGgGaAloD0MIQURq2kUkZECUhpRSlGgVTegDaBZHQJj9VlQMx491fZQoaAZoCWgPQwjFHAQdLfdiQJSGlFKUaBVN6ANoFkdAmQSQXyiEhHV9lChoBmgJaA9DCMx8Bz9xrV9AlIaUUpRoFU3oA2gWR0CZDCJp35erdX2UKGgGaAloD0MI4umVsoy4ZkCUhpRSlGgVTegDaBZHQJkP3LA57w91fZQoaAZoCWgPQwjaAkLr4TFiQJSGlFKUaBVN6ANoFkdAmRCOr2g3+HV9lChoBmgJaA9DCBwkRPmCc2VAlIaUUpRoFU3oA2gWR0CZFa1W8yvcdX2UKGgGaAloD0MIAmVTrvBYXECUhpRSlGgVTegDaBZHQJkgzd/J/5N1fZQoaAZoCWgPQwiKBb6iW9NgQJSGlFKUaBVN6ANoFkdAmSR8rZrYXnV9lChoBmgJaA9DCPdXj/tW1mRAlIaUUpRoFU3oA2gWR0CZJI1wHZ9NdX2UKGgGaAloD0MItK88SE/8ZUCUhpRSlGgVTegDaBZHQJklCJO32El1fZQoaAZoCWgPQwjtZHCUvOtiQJSGlFKUaBVN6ANoFkdAmTufwRXfZXV9lChoBmgJaA9DCEInhA46+GJAlIaUUpRoFU3oA2gWR0CZQQm/WUbDdX2UKGgGaAloD0MIeXdkrDa0X0CUhpRSlGgVTegDaBZHQJlFYXLvCuV1fZQoaAZoCWgPQwhvRWKCmrNgQJSGlFKUaBVN6ANoFkdAmUs15nlGPXV9lChoBmgJaA9DCMh8QKAzCGNAlIaUUpRoFU3oA2gWR0CZTSE/SpirdX2UKGgGaAloD0MIWafK94wpY0CUhpRSlGgVTegDaBZHQJlNvIxQBPt1fZQoaAZoCWgPQwhQ3zKny1NhQJSGlFKUaBVN6ANoFkdAmVEsdHUc43V9lChoBmgJaA9DCDawVYLFI1pAlIaUUpRoFU3oA2gWR0CZV77CzkZKdX2UKGgGaAloD0MI8UbmkT+HZkCUhpRSlGgVTegDaBZHQJlepiCrcTJ1fZQoaAZoCWgPQwhqMXiYdg9mQJSGlFKUaBVN6ANoFkdAmWHkzKs+3nV9lChoBmgJaA9DCIgrZ+8Md2NAlIaUUpRoFU3oA2gWR0CZYpL/jsD5dX2UKGgGaAloD0MIQKTfvg4OW0CUhpRSlGgVTegDaBZHQJlnVpmEoOR1fZQoaAZoCWgPQwiMvoI0Y2RlQJSGlFKUaBVN6ANoFkdAmXIdGqgh83V9lChoBmgJaA9DCF+WdmouOFxAlIaUUpRoFU3oA2gWR0CZdgp35eqrdX2UKGgGaAloD0MIO6buyi7QZkCUhpRSlGgVTegDaBZHQJl2HPfKp1l1fZQoaAZoCWgPQwgQ6bevA68/QJSGlFKUaBVL42gWR0CZdrgmqo60dX2UKGgGaAloD0MIFJLM6h3hX0CUhpRSlGgVTegDaBZHQJl2rv6TGHZ1fZQoaAZoCWgPQwh0QBL27YlhQJSGlFKUaBVN6ANoFkdAmXry39aUzXV9lChoBmgJaA9DCDG3e7lP5mRAlIaUUpRoFU3oA2gWR0CZkzReC04SdX2UKGgGaAloD0MIAMRdvQocYkCUhpRSlGgVTegDaBZHQJmX29ytFKF1fZQoaAZoCWgPQwi46jpUUzJfQJSGlFKUaBVN6ANoFkdAmZ5pHiFTN3V9lChoBmgJaA9DCFrwoq8geV5AlIaUUpRoFU3oA2gWR0CZoGrqt5lfdX2UKGgGaAloD0MIkbdc/VgaZ0CUhpRSlGgVTegDaBZHQJmhEuDjBEd1fZQoaAZoCWgPQwgrbtxi/vFkQJSGlFKUaBVN6ANoFkdAmaSOstCiRHV9lChoBmgJaA9DCNifxOdOjmdAlIaUUpRoFU3oA2gWR0CZq6IgeRxMdX2UKGgGaAloD0MIFHgnn56NZkCUhpRSlGgVTegDaBZHQJmzQ61b7j11fZQoaAZoCWgPQwiyYyMQr3djQJSGlFKUaBVN6ANoFkdAmbb0a/ATI3V9lChoBmgJaA9DCPAXsyWr32JAlIaUUpRoFU3oA2gWR0CZt6NJe3QVdX2UKGgGaAloD0MIutv10hSTYUCUhpRSlGgVTegDaBZHQJnJAoc7yQR1fZQoaAZoCWgPQwhjfQOTG6lmQJSGlFKUaBVN6ANoFkdAmc1cgMc6vXV9lChoBmgJaA9DCAVQjCwZRmFAlIaUUpRoFU3oA2gWR0CZzW9Net0WdX2UKGgGaAloD0MIZktWRTgTY0CUhpRSlGgVTegDaBZHQJnODTlT3qR1fZQoaAZoCWgPQwgpBHKJI65gQJSGlFKUaBVN6ANoFkdAmc4C+xnnMnV9lChoBmgJaA9DCBe86CtIq2FAlIaUUpRoFU3oA2gWR0CZ0pcuJ1q4dX2UKGgGaAloD0MIoE55dKMnYkCUhpRSlGgVTegDaBZHQJnq42GZeAx1fZQoaAZoCWgPQwgdIm5OJeFgQJSGlFKUaBVN6ANoFkdAme8ZFCswL3V9lChoBmgJaA9DCLbbLjTXHUxAlIaUUpRoFU0XAWgWR0CZ8P0T101ZdX2UKGgGaAloD0MIOnr83ibKZUCUhpRSlGgVTegDaBZHQJn0iEL6UJR1fZQoaAZoCWgPQwiAf0qVKBJkQJSGlFKUaBVN6ANoFkdAmfYty925hHV9lChoBmgJaA9DCB8r+G0IBWBAlIaUUpRoFU3oA2gWR0CZ9q8xbjcVdX2UKGgGaAloD0MIs14M5cQBZECUhpRSlGgVTegDaBZHQJn5r1qWTot1fZQoaAZoCWgPQwhmTSzwFV31P5SGlFKUaBVNFQFoFkdAmf7htgrpaHV9lChoBmgJaA9DCFioNc07zVtAlIaUUpRoFU3oA2gWR0CZ/4GA08/2dX2UKGgGaAloD0MI+BkXDoSlZECUhpRSlGgVTegDaBZHQJoFlkwvg3t1fZQoaAZoCWgPQwisHcU56nxfQJSGlFKUaBVN6ANoFkdAmgiNvsJID3V9lChoBmgJaA9DCFJgAUwZ+VtAlIaUUpRoFU3oA2gWR0CaCRrhR64UdX2UKGgGaAloD0MIn1p9dVXkMUCUhpRSlGgVTSkBaBZHQJoQSkoF3ZB1fZQoaAZoCWgPQwigiEUMO2BjQJSGlFKUaBVN6ANoFkdAmhcJFocrAnV9lChoBmgJaA9DCIcUAySaSFxAlIaUUpRoFU3oA2gWR0CaGlhttQ9BdX2UKGgGaAloD0MIuhRXlf0bYUCUhpRSlGgVTegDaBZHQJoa7XGwRoR1fZQoaAZoCWgPQwgf1hu1wrBiQJSGlFKUaBVN6ANoFkdAmhrkBXCCSXV9lChoBmgJaA9DCM/zp41qGGJAlIaUUpRoFU3oA2gWR0CaHnoWYWtVdX2UKGgGaAloD0MI3KFhMWo/ZUCUhpRSlGgVTegDaBZHQJo1rEHdGiJ1fZQoaAZoCWgPQwhTzaylgAVnQJSGlFKUaBVN6ANoFkdAmjuSxZ+x4nV9lChoBmgJaA9DCBv0pbe/eWRAlIaUUpRoFU3oA2gWR0CaP1G2TgVHdX2UKGgGaAloD0MIoWgewCL3Y0CUhpRSlGgVTegDaBZHQJpBHQAuIyl1fZQoaAZoCWgPQwiMo3ITtcliQJSGlFKUaBVN6ANoFkdAmkG3ZTQ3P3V9lChoBmgJaA9DCL1TAfe8dmVAlIaUUpRoFU3oA2gWR0CaRPQEIPbxdX2UKGgGaAloD0MI+RIqODxxY0CUhpRSlGgVTegDaBZHQJpK23jMmnh1fZQoaAZoCWgPQwjvjozV5uhgQJSGlFKUaBVN6ANoFkdAmlKzFERao3V9lChoBmgJaA9DCAQdrWpJy2RAlIaUUpRoFU3oA2gWR0CaVisHSncddX2UKGgGaAloD0MITdnpB3VEYECUhpRSlGgVTegDaBZHQJpW1mthd+p1fZQoaAZoCWgPQwig+geRDLJhQJSGlFKUaBVN6ANoFkdAml9eV9nbqXV9lChoBmgJaA9DCFIst7QaTWNAlIaUUpRoFU3oA2gWR0CaZp+KjzqbdX2UKGgGaAloD0MIyv55GjCqZECUhpRSlGgVTegDaBZHQJpqih37k4p1fZQoaAZoCWgPQwhLAz+q4WBiQJSGlFKUaBVN6ANoFkdAmmsv557gKnV9lChoBmgJaA9DCKyt2F/2K2FAlIaUUpRoFU3oA2gWR0CaayY51eSkdX2UKGgGaAloD0MI/N8RFaoAXECUhpRSlGgVTegDaBZHQJpvqScLBsR1fZQoaAZoCWgPQwjcD3hgAKpjQJSGlFKUaBVN6ANoFkdAmogR3qzJIXV9lChoBmgJaA9DCAt/hjdr3ENAlIaUUpRoFU0OAWgWR0CainVTaTOgdX2UKGgGaAloD0MI/Wg4Ze4zZUCUhpRSlGgVTegDaBZHQJqOotTUAkt1fZQoaAZoCWgPQwjK3lLOFztkQJSGlFKUaBVN6ANoFkdAmpKnvDxb0XV9lChoBmgJaA9DCE26LZGLLWFAlIaUUpRoFU3oA2gWR0CalGYGt6omdX2UKGgGaAloD0MIqJAr9aydZ0CUhpRSlGgVTegDaBZHQJqU/M1TBIp1fZQoaAZoCWgPQwjzx7Q2DeZlQJSGlFKUaBVN6ANoFkdAmpfxP420iXV9lChoBmgJaA9DCH15AfbRB2BAlIaUUpRoFU3oA2gWR0CanWnLaEi/dX2UKGgGaAloD0MIbJc2HJbeSECUhpRSlGgVTTIBaBZHQJqhJlbu+h51fZQoaAZoCWgPQwhyNEdW/rZmQJSGlFKUaBVN6ANoFkdAmqTnrUsnRnV9lChoBmgJaA9DCHE9CtejEmBAlIaUUpRoFU3oA2gWR0CaqDPFvQ4TdX2UKGgGaAloD0MILT4FwHicZkCUhpRSlGgVTegDaBZHQJqo1WeYlY51fZQoaAZoCWgPQwidnQyOkoZkQJSGlFKUaBVN6ANoFkdAmrE+vZAY53V9lChoBmgJaA9DCBMteTwtzGJAlIaUUpRoFU3oA2gWR0CavpmE4//vdX2UKGgGaAloD0MIsWmlEMi9YUCUhpRSlGgVTegDaBZHQJq/S+qR2bJ1fZQoaAZoCWgPQwi5GtmVlhphQJSGlFKUaBVN6ANoFkdAmr9C+lCTlnV9lChoBmgJaA9DCPjj9ssn519AlIaUUpRoFU3oA2gWR0Caw3wdKdxydX2UKGgGaAloD0MIM8FwruF9YkCUhpRSlGgVTegDaBZHQJrI/dHlOoJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a380fdafeb85d4e61af71562229c656a9ffca6a10ecde25485459d96a646fc77
3
+ size 144156
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f178d5320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f178d53b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f178d5440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f178d54d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4f178d5560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4f178d55f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f178d5680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4f178d5710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f178d57a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f178d5830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f178d58c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4f17922810>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1655067162.1339087,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAApgW+veNZnT/1mO6+Cvy6vhvw2Txjmbu9AAAAAAAAAAAA5Om89swnui4Lmzo1s5O1ZxFpur77t7kAAIA/AACAP2YksrwUlpK6bsuJuTo5WjWEVSK7FkvCtAAAgD8AAIA/Tc5hvXuikbpWaTC4nGsrs8caJbrpgkw3AACAPwAAgD9zwsC9XEt+ukvM4LcRWDiz2vDZuXRCAzcAAAAAAACAP4AZW77DjTc/qLRhO/F6YL4s9Bu9ss2TvQAAAAAAAAAA5uXmvfaIVrrVap+2/aaJM9EEnbuw+7E1AACAPwAAgD+zQIk9j+ZlumXYHbw7WMa18eyauZMFNTUAAAAAAAAAAPPahr2sQrs+Q4akO+peML5jlQw7wqPGvAAAAAAAAAAAgNcYPtT45T6Aodi9blBKvtvBgDxOo8i9AAAAAAAAAABmPk48j/ozuhJrSrviHxo3oR4Guz5cjLYAAIA/AACAP2YaXT3hoIy6ZlvROpoR/zPw9Dm7qNXyuQAAgD8AAIA/Zpi6PFJwvrnGEqK76e0kN0+GUzq1qJm2AACAPwAAgD8zdPs8FGSCuuAvwTrrQZI1kQm1unsJ4bkAAIA/AACAP4B3Qb5P3Z8+3ipMPtOgWL4/vg49fpIJPgAAAAAAAAAA8yqVvfYETbo285W7jZI6tm3s3Dqqbq46AACAPwAAgD+UdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIknpP5TQ+YUCUhpRSlIwBbJRN6AOMAXSUR0CY8BwoLG70dX2UKGgGaAloD0MInSrfMxJeXkCUhpRSlGgVTegDaBZHQJj2zRc/t6Z1fZQoaAZoCWgPQwgGE38U9WllQJSGlFKUaBVN6ANoFkdAmPjpHuqm0nV9lChoBmgJaA9DCEK0VrQ5RWRAlIaUUpRoFU3oA2gWR0CY+aWl/H5rdX2UKGgGaAloD0MIQURq2kUkZECUhpRSlGgVTegDaBZHQJj9VlQMx491fZQoaAZoCWgPQwjFHAQdLfdiQJSGlFKUaBVN6ANoFkdAmQSQXyiEhHV9lChoBmgJaA9DCMx8Bz9xrV9AlIaUUpRoFU3oA2gWR0CZDCJp35erdX2UKGgGaAloD0MI4umVsoy4ZkCUhpRSlGgVTegDaBZHQJkP3LA57w91fZQoaAZoCWgPQwjaAkLr4TFiQJSGlFKUaBVN6ANoFkdAmRCOr2g3+HV9lChoBmgJaA9DCBwkRPmCc2VAlIaUUpRoFU3oA2gWR0CZFa1W8yvcdX2UKGgGaAloD0MIAmVTrvBYXECUhpRSlGgVTegDaBZHQJkgzd/J/5N1fZQoaAZoCWgPQwiKBb6iW9NgQJSGlFKUaBVN6ANoFkdAmSR8rZrYXnV9lChoBmgJaA9DCPdXj/tW1mRAlIaUUpRoFU3oA2gWR0CZJI1wHZ9NdX2UKGgGaAloD0MItK88SE/8ZUCUhpRSlGgVTegDaBZHQJklCJO32El1fZQoaAZoCWgPQwjtZHCUvOtiQJSGlFKUaBVN6ANoFkdAmTufwRXfZXV9lChoBmgJaA9DCEInhA46+GJAlIaUUpRoFU3oA2gWR0CZQQm/WUbDdX2UKGgGaAloD0MIeXdkrDa0X0CUhpRSlGgVTegDaBZHQJlFYXLvCuV1fZQoaAZoCWgPQwhvRWKCmrNgQJSGlFKUaBVN6ANoFkdAmUs15nlGPXV9lChoBmgJaA9DCMh8QKAzCGNAlIaUUpRoFU3oA2gWR0CZTSE/SpirdX2UKGgGaAloD0MIWafK94wpY0CUhpRSlGgVTegDaBZHQJlNvIxQBPt1fZQoaAZoCWgPQwhQ3zKny1NhQJSGlFKUaBVN6ANoFkdAmVEsdHUc43V9lChoBmgJaA9DCDawVYLFI1pAlIaUUpRoFU3oA2gWR0CZV77CzkZKdX2UKGgGaAloD0MI8UbmkT+HZkCUhpRSlGgVTegDaBZHQJlepiCrcTJ1fZQoaAZoCWgPQwhqMXiYdg9mQJSGlFKUaBVN6ANoFkdAmWHkzKs+3nV9lChoBmgJaA9DCIgrZ+8Md2NAlIaUUpRoFU3oA2gWR0CZYpL/jsD5dX2UKGgGaAloD0MIQKTfvg4OW0CUhpRSlGgVTegDaBZHQJlnVpmEoOR1fZQoaAZoCWgPQwiMvoI0Y2RlQJSGlFKUaBVN6ANoFkdAmXIdGqgh83V9lChoBmgJaA9DCF+WdmouOFxAlIaUUpRoFU3oA2gWR0CZdgp35eqrdX2UKGgGaAloD0MIO6buyi7QZkCUhpRSlGgVTegDaBZHQJl2HPfKp1l1fZQoaAZoCWgPQwgQ6bevA68/QJSGlFKUaBVL42gWR0CZdrgmqo60dX2UKGgGaAloD0MIFJLM6h3hX0CUhpRSlGgVTegDaBZHQJl2rv6TGHZ1fZQoaAZoCWgPQwh0QBL27YlhQJSGlFKUaBVN6ANoFkdAmXry39aUzXV9lChoBmgJaA9DCDG3e7lP5mRAlIaUUpRoFU3oA2gWR0CZkzReC04SdX2UKGgGaAloD0MIAMRdvQocYkCUhpRSlGgVTegDaBZHQJmX29ytFKF1fZQoaAZoCWgPQwi46jpUUzJfQJSGlFKUaBVN6ANoFkdAmZ5pHiFTN3V9lChoBmgJaA9DCFrwoq8geV5AlIaUUpRoFU3oA2gWR0CZoGrqt5lfdX2UKGgGaAloD0MIkbdc/VgaZ0CUhpRSlGgVTegDaBZHQJmhEuDjBEd1fZQoaAZoCWgPQwgrbtxi/vFkQJSGlFKUaBVN6ANoFkdAmaSOstCiRHV9lChoBmgJaA9DCNifxOdOjmdAlIaUUpRoFU3oA2gWR0CZq6IgeRxMdX2UKGgGaAloD0MIFHgnn56NZkCUhpRSlGgVTegDaBZHQJmzQ61b7j11fZQoaAZoCWgPQwiyYyMQr3djQJSGlFKUaBVN6ANoFkdAmbb0a/ATI3V9lChoBmgJaA9DCPAXsyWr32JAlIaUUpRoFU3oA2gWR0CZt6NJe3QVdX2UKGgGaAloD0MIutv10hSTYUCUhpRSlGgVTegDaBZHQJnJAoc7yQR1fZQoaAZoCWgPQwhjfQOTG6lmQJSGlFKUaBVN6ANoFkdAmc1cgMc6vXV9lChoBmgJaA9DCAVQjCwZRmFAlIaUUpRoFU3oA2gWR0CZzW9Net0WdX2UKGgGaAloD0MIZktWRTgTY0CUhpRSlGgVTegDaBZHQJnODTlT3qR1fZQoaAZoCWgPQwgpBHKJI65gQJSGlFKUaBVN6ANoFkdAmc4C+xnnMnV9lChoBmgJaA9DCBe86CtIq2FAlIaUUpRoFU3oA2gWR0CZ0pcuJ1q4dX2UKGgGaAloD0MIoE55dKMnYkCUhpRSlGgVTegDaBZHQJnq42GZeAx1fZQoaAZoCWgPQwgdIm5OJeFgQJSGlFKUaBVN6ANoFkdAme8ZFCswL3V9lChoBmgJaA9DCLbbLjTXHUxAlIaUUpRoFU0XAWgWR0CZ8P0T101ZdX2UKGgGaAloD0MIOnr83ibKZUCUhpRSlGgVTegDaBZHQJn0iEL6UJR1fZQoaAZoCWgPQwiAf0qVKBJkQJSGlFKUaBVN6ANoFkdAmfYty925hHV9lChoBmgJaA9DCB8r+G0IBWBAlIaUUpRoFU3oA2gWR0CZ9q8xbjcVdX2UKGgGaAloD0MIs14M5cQBZECUhpRSlGgVTegDaBZHQJn5r1qWTot1fZQoaAZoCWgPQwhmTSzwFV31P5SGlFKUaBVNFQFoFkdAmf7htgrpaHV9lChoBmgJaA9DCFioNc07zVtAlIaUUpRoFU3oA2gWR0CZ/4GA08/2dX2UKGgGaAloD0MI+BkXDoSlZECUhpRSlGgVTegDaBZHQJoFlkwvg3t1fZQoaAZoCWgPQwisHcU56nxfQJSGlFKUaBVN6ANoFkdAmgiNvsJID3V9lChoBmgJaA9DCFJgAUwZ+VtAlIaUUpRoFU3oA2gWR0CaCRrhR64UdX2UKGgGaAloD0MIn1p9dVXkMUCUhpRSlGgVTSkBaBZHQJoQSkoF3ZB1fZQoaAZoCWgPQwigiEUMO2BjQJSGlFKUaBVN6ANoFkdAmhcJFocrAnV9lChoBmgJaA9DCIcUAySaSFxAlIaUUpRoFU3oA2gWR0CaGlhttQ9BdX2UKGgGaAloD0MIuhRXlf0bYUCUhpRSlGgVTegDaBZHQJoa7XGwRoR1fZQoaAZoCWgPQwgf1hu1wrBiQJSGlFKUaBVN6ANoFkdAmhrkBXCCSXV9lChoBmgJaA9DCM/zp41qGGJAlIaUUpRoFU3oA2gWR0CaHnoWYWtVdX2UKGgGaAloD0MI3KFhMWo/ZUCUhpRSlGgVTegDaBZHQJo1rEHdGiJ1fZQoaAZoCWgPQwhTzaylgAVnQJSGlFKUaBVN6ANoFkdAmjuSxZ+x4nV9lChoBmgJaA9DCBv0pbe/eWRAlIaUUpRoFU3oA2gWR0CaP1G2TgVHdX2UKGgGaAloD0MIoWgewCL3Y0CUhpRSlGgVTegDaBZHQJpBHQAuIyl1fZQoaAZoCWgPQwiMo3ITtcliQJSGlFKUaBVN6ANoFkdAmkG3ZTQ3P3V9lChoBmgJaA9DCL1TAfe8dmVAlIaUUpRoFU3oA2gWR0CaRPQEIPbxdX2UKGgGaAloD0MI+RIqODxxY0CUhpRSlGgVTegDaBZHQJpK23jMmnh1fZQoaAZoCWgPQwjvjozV5uhgQJSGlFKUaBVN6ANoFkdAmlKzFERao3V9lChoBmgJaA9DCAQdrWpJy2RAlIaUUpRoFU3oA2gWR0CaVisHSncddX2UKGgGaAloD0MITdnpB3VEYECUhpRSlGgVTegDaBZHQJpW1mthd+p1fZQoaAZoCWgPQwig+geRDLJhQJSGlFKUaBVN6ANoFkdAml9eV9nbqXV9lChoBmgJaA9DCFIst7QaTWNAlIaUUpRoFU3oA2gWR0CaZp+KjzqbdX2UKGgGaAloD0MIyv55GjCqZECUhpRSlGgVTegDaBZHQJpqih37k4p1fZQoaAZoCWgPQwhLAz+q4WBiQJSGlFKUaBVN6ANoFkdAmmsv557gKnV9lChoBmgJaA9DCKyt2F/2K2FAlIaUUpRoFU3oA2gWR0CaayY51eSkdX2UKGgGaAloD0MI/N8RFaoAXECUhpRSlGgVTegDaBZHQJpvqScLBsR1fZQoaAZoCWgPQwjcD3hgAKpjQJSGlFKUaBVN6ANoFkdAmogR3qzJIXV9lChoBmgJaA9DCAt/hjdr3ENAlIaUUpRoFU0OAWgWR0CainVTaTOgdX2UKGgGaAloD0MI/Wg4Ze4zZUCUhpRSlGgVTegDaBZHQJqOotTUAkt1fZQoaAZoCWgPQwjK3lLOFztkQJSGlFKUaBVN6ANoFkdAmpKnvDxb0XV9lChoBmgJaA9DCE26LZGLLWFAlIaUUpRoFU3oA2gWR0CalGYGt6omdX2UKGgGaAloD0MIqJAr9aydZ0CUhpRSlGgVTegDaBZHQJqU/M1TBIp1fZQoaAZoCWgPQwjzx7Q2DeZlQJSGlFKUaBVN6ANoFkdAmpfxP420iXV9lChoBmgJaA9DCH15AfbRB2BAlIaUUpRoFU3oA2gWR0CanWnLaEi/dX2UKGgGaAloD0MIbJc2HJbeSECUhpRSlGgVTTIBaBZHQJqhJlbu+h51fZQoaAZoCWgPQwhyNEdW/rZmQJSGlFKUaBVN6ANoFkdAmqTnrUsnRnV9lChoBmgJaA9DCHE9CtejEmBAlIaUUpRoFU3oA2gWR0CaqDPFvQ4TdX2UKGgGaAloD0MILT4FwHicZkCUhpRSlGgVTegDaBZHQJqo1WeYlY51fZQoaAZoCWgPQwidnQyOkoZkQJSGlFKUaBVN6ANoFkdAmrE+vZAY53V9lChoBmgJaA9DCBMteTwtzGJAlIaUUpRoFU3oA2gWR0CavpmE4//vdX2UKGgGaAloD0MIsWmlEMi9YUCUhpRSlGgVTegDaBZHQJq/S+qR2bJ1fZQoaAZoCWgPQwi5GtmVlhphQJSGlFKUaBVN6ANoFkdAmr9C+lCTlnV9lChoBmgJaA9DCPjj9ssn519AlIaUUpRoFU3oA2gWR0Caw3wdKdxydX2UKGgGaAloD0MIM8FwruF9YkCUhpRSlGgVTegDaBZHQJrI/dHlOoJ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c918368b9f8186325f90b66878b5cf68cdf702ee1d481fdcef7f149b0e996bd
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a14fe98e3a2e57e82f82ac530a657f56587ecbb2ce079c9244e161e5c3f0ed3
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee22cb973a3f102f39a812fe81decac3ab429965aa59ae16a5e8a759f68c490e
3
+ size 242302
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.47436160352032, "std_reward": 17.999685179964942, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-12T21:11:22.168098"}