File size: 3,710 Bytes
105063f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
base_model: HiTZ/latxa-7b-v1.2
datasets:
- HiTZ/latxa-corpus-v1.1
language:
- eu
- en
license: llama2
metrics:
- accuracy
- f1
- perplexity
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
model-index:
- name: Latxa-7b-v1.2
results:
- task:
type: multiple-choice
dataset:
name: xstory_cloze
type: XStory
metrics:
- type: Accuracy (0-shot)
value: 65.72
name: Accuracy (0-shot)
source:
url: https://arxiv.org/abs/2403.20266
name: Paper
- task:
type: multiple-choice
dataset:
name: belebele
type: Belebele
metrics:
- type: Accuracy (5-shot)
value: 36.89
name: Accuracy (5-shot)
source:
url: https://arxiv.org/abs/2403.20266
name: Paper
- task:
type: mix
dataset:
name: basque_glue
type: BasqueGLUE
metrics:
- type: Average scores (5-shot)
value: 51.78
name: Average scores (5-shot)
source:
url: https://arxiv.org/abs/2403.20266
name: Paper
- task:
type: multiple_choice
dataset:
name: eus_proficiency
type: EusProficiency
metrics:
- type: Accuracy (5-shot)
value: 32.44
name: Accuracy (5-shot)
source:
url: https://arxiv.org/abs/2403.20266
name: Paper
- task:
type: multiple_choice
dataset:
name: eus_reading
type: EusReading
metrics:
- type: Accuracy (5-shot)
value: 30.4
name: Accuracy (5-shot)
source:
url: https://arxiv.org/abs/2403.20266
name: Paper
- task:
type: multiple_choice
dataset:
name: eus_trivia
type: EusTrivia
metrics:
- type: Accuracy (5-shot)
value: 44.37
name: Accuracy (5-shot)
source:
url: https://arxiv.org/abs/2403.20266
name: Paper
- task:
type: multiple_choice
dataset:
name: eus_exams
type: EusExams
metrics:
- type: Accuracy (5-shot)
value: 34.2
name: Accuracy (5-shot)
source:
url: https://arxiv.org/abs/2403.20266
name: Paper
---
# NikolayKozloff/latxa-7b-v1.2-Q8_0-GGUF
This model was converted to GGUF format from [`HiTZ/latxa-7b-v1.2`](https://huggingface.co/HiTZ/latxa-7b-v1.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/HiTZ/latxa-7b-v1.2) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo NikolayKozloff/latxa-7b-v1.2-Q8_0-GGUF --hf-file latxa-7b-v1.2-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo NikolayKozloff/latxa-7b-v1.2-Q8_0-GGUF --hf-file latxa-7b-v1.2-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo NikolayKozloff/latxa-7b-v1.2-Q8_0-GGUF --hf-file latxa-7b-v1.2-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo NikolayKozloff/latxa-7b-v1.2-Q8_0-GGUF --hf-file latxa-7b-v1.2-q8_0.gguf -c 2048
```
|