Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1704.47 +/- 175.74
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae47ea3dfdc4c3a7aa9cbc63bc2c9b89555a6eec62c2b8e7b2329ec69e170061
|
3 |
+
size 128937
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc42d99da70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc42d99db00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc42d99db90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc42d99dc20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc42d99dcb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc42d99dd40>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc42d99ddd0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc42d99de60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc42d99def0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc42d99df80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc42d923050>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc42d965ab0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1662527913.549982,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAARwewvWB2cL+5BIE+JjYfP1HogL7AIZ0+b1gQv2Fmirv/TWk++7ffPsjvvDz24zI+gQrhvRzo3L47w9E+8wfUvxoFjj89S6y+MocuvzIvqD6pCRq/siPFP4d1KT6Gu4W/AU6Gv7Gs8T4NV/0+uUCYvy/bjT7RQBI+oq8YP7fgGj8nObu/t7tMP8tjgb9lWBu+Wnw+P82wBT22leG9S7sEvrQQe7+lyfm/1z8DP9ihE8CvMFk/Shq3vnXvn7+IzDu+usLAPf7oyD8jv4A+B1cNwAFOhr9YlgfADVf9PrlAmL/JTg0/XNMyv5r31D5MbG8/0lGCvqM7iz0pgHe9yhKuv+xiLj8NGFe/JEGaP1dnor7gTpu/2oVhPsEe8b6Xpp4+wZKCPglbQL8TWQ8/qfsmQPpunzyjsG+/XC0ivvU+Oz6F+3M/sazxPg1X/T65QJi/hVW9PvlNv79BZtG+5DULvqQhyL+TVwK/3nlGvgY9eL/TWzc/T+BCv76GYD93XwO+yoaTv5H/BsC0oXC+Tx2Av/llCz8pd4O/MyoRPbW0D7+dDMO+iatPP0eDKD/f4nW9AU6Gv7Gs8T4NV/0+uUCYv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJMfzDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBZyw++AAAAADwE278AAAAA0iPtPAAAAACWruY/AAAAAOaFIL0AAAAA723rPwAAAAA1UwW+AAAAAPcA4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSgww0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAp5ChPAAAAACMVvy/AAAAAIxiGb0AAAAALCXvPwAAAADzkKY9AAAAACNg6T8AAAAApRCJPAAAAABmn9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApEXDNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBp0jTwAAAAAafjyvwAAAACSEm49AAAAAB0sAEAAAAAAB97pPQAAAACcXOA/AAAAAOsgBj4AAAAAbpnvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPGh/jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQoga8AAAAAJ4e8b8AAAAARlT0PQAAAABq8/0/AAAAAFxWqj0AAAAAyajjPwAAAABwwvO9AAAAAKuT/78AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJNjsmShakiMAWyUTegDjAF0lEdAqHJl49ovjHV9lChoBkdAlym1XA/LT2gHTegDaAhHQKhz/TuOS4h1fZQoaAZHQJZst26kIopoB03oA2gIR0CodfoToMa1dX2UKGgGR0CV9Hsi0OVgaAdN6ANoCEdAqHc8580DU3V9lChoBkdAmUY82eg+QmgHTegDaAhHQKh++Qrc0tR1fZQoaAZHQJlYCE25xzdoB03oA2gIR0CogJ+lbeMydX2UKGgGR0CZPCxG2CumaAdN6ANoCEdAqIKrAgxJunV9lChoBkdAloPILgGbC2gHTegDaAhHQKiEAS39aU11fZQoaAZHQJkjhoXbdrRoB03oA2gIR0Coi8aJAMUidX2UKGgGR0CYtglS0jTsaAdN6ANoCEdAqI1Y1FYuCnV9lChoBkdAmQpt8E3bVWgHTegDaAhHQKiPZtYSxqx1fZQoaAZHQJkBglRgqmVoB03oA2gIR0CokLMpw0fpdX2UKGgGR0CdDCgaFVT8aAdN6ANoCEdAqJhrYNAkcHV9lChoBkdAnPGk0WM0g2gHTegDaAhHQKiZ/SfDk2h1fZQoaAZHQJxKS5oXbdtoB03oA2gIR0ConAK4QSSNdX2UKGgGR0CaVeuGbkOqaAdN6ANoCEdAqJ1HAuZkTnV9lChoBkdAmp87g88s+WgHTegDaAhHQKik3JRO1v51fZQoaAZHQJ0cpaV2Rq5oB03oA2gIR0Copm9U0elsdX2UKGgGR0CY1Ap1zQu3aAdN6ANoCEdAqKhtqQA+6nV9lChoBkdAnAa3N5dGAmgHTegDaAhHQKiptxy4nWt1fZQoaAZHQJlKdUVBUrFoB03oA2gIR0CosWCkoF3ZdX2UKGgGR0CUkmY6GQCCaAdN6ANoCEdAqLLwvvjOs3V9lChoBkdAlB5cf3evZGgHTegDaAhHQKi08Z0jkdV1fZQoaAZHQJRf3rB0p3JoB03oA2gIR0Cotk0zTF2ndX2UKGgGR0CWKFcgyM1kaAdN6ANoCEdAqL4JF1B+nnV9lChoBkdAl0i9liBoVWgHTegDaAhHQKi/oHbAUL51fZQoaAZHQJBSOmygPEtoB03oA2gIR0CowaM2eg+RdX2UKGgGR0COX/ozvZyuaAdN6ANoCEdAqMLsxO+IuXV9lChoBkdAldfODaoMrmgHTegDaAhHQKjK0bJfYz11fZQoaAZHQI9sk56t1ZFoB03oA2gIR0CozHXGff4zdX2UKGgGR0CUPKfKISDiaAdN6ANoCEdAqM5/DUExI3V9lChoBkdAig3rTpgTiGgHTegDaAhHQKjPyLb5/LF1fZQoaAZHQJXApIe5nUVoB03oA2gIR0Co15ZHEuQIdX2UKGgGR0CdY/qJuVHGaAdN6ANoCEdAqNlF4qwyI3V9lChoBkdAkAA3xz7uUmgHTegDaAhHQKjbTC9h7Vt1fZQoaAZHQJtZxhnanJloB03oA2gIR0Co3Jp0nw5OdX2UKGgGR0CVGoRzzVc2aAdN6ANoCEdAqORFnK4hEHV9lChoBkdAkf/hOk+HJ2gHTegDaAhHQKjmDULDye91fZQoaAZHQJoIq5tm+TNoB03oA2gIR0Co6BZooNNKdX2UKGgGR0CTZWl9jPOZaAdN6ANoCEdAqOliSq2jPHV9lChoBkdAnFEEp3HJcWgHTegDaAhHQKjxIOEug6F1fZQoaAZHQJgyJJ8OTaFoB03oA2gIR0Co8rVmJ3xGdX2UKGgGR0CaxSe/5+H8aAdN6ANoCEdAqPS+hufmLnV9lChoBkdAmzZTQ7cO9WgHTegDaAhHQKj2RiZv1lJ1fZQoaAZHQJ9Zz5P/JeVoB03oA2gIR0Co/lDlHSWrdX2UKGgGR0Ca6kIxgy/LaAdN6ANoCEdAqP/iYgJTl3V9lChoBkdAm62+eBg/kmgHTegDaAhHQKkB5HuJDVp1fZQoaAZHQJy4XYBeXzFoB03oA2gIR0CpAyTabnX/dX2UKGgGR0Cf2mECvHLiaAdN6ANoCEdAqQrLmbLEDXV9lChoBkdAnbiUZzgdfmgHTegDaAhHQKkMhzPKMeh1fZQoaAZHQJpDbj/+85FoB03oA2gIR0CpDpE5QxetdX2UKGgGR0CabMGLk0aZaAdN6ANoCEdAqRAao0hvBXV9lChoBkdAnO+z+m3vyGgHTegDaAhHQKkXxUvPC2t1fZQoaAZHQJ2hBXmvGIdoB03oA2gIR0CpGVLSuyNXdX2UKGgGR0BqiXGACnxbaAdN6ANoCEdAqRthRdhRZXV9lChoBkdAnL10oWpIc2gHTegDaAhHQKkcyAkLQX11fZQoaAZHQJnszub7TDxoB03oA2gIR0CpJYA1vVEvdX2UKGgGR0B3YMXP7el9aAdN6ANoCEdAqScaXWvr4XV9lChoBkdAfQCuAZsKs2gHTegDaAhHQKkpas052hZ1fZQoaAZHQJsbJQizLOloB03oA2gIR0CpKtTsQd0adX2UKGgGR0CZqdV/+bVjaAdN6ANoCEdAqTVn2K2rn3V9lChoBkdAgSSGZeAuqWgHTegDaAhHQKk2/jZteld1fZQoaAZHQJyI52U0Nz9oB03oA2gIR0CpOTgsTWXkdX2UKGgGR0CIk3KzRhMKaAdN6ANoCEdAqTqePtD2J3V9lChoBkdAm4XpOBUaQ2gHTegDaAhHQKlCqxUvPC51fZQoaAZHQJm7zd56dDpoB03oA2gIR0CpRIw0GeMAdX2UKGgGR0CbLQXiR4hVaAdN6ANoCEdAqUbtYOlO5HV9lChoBkdAnO/HGn4wiGgHTegDaAhHQKlIfuNPxhF1fZQoaAZHQJj+WSV4X41oB03oA2gIR0CpUWSdOIqLdX2UKGgGR0Ca4A3trsSkaAdN6ANoCEdAqVNkJrtVrHV9lChoBkdAmJtX1WbPQmgHTegDaAhHQKlVzflZHNJ1fZQoaAZHQJhVRWXC0nhoB03oA2gIR0CpV2nlfZ27dX2UKGgGR0CbbGcnE2pAaAdN6ANoCEdAqWD2mvW6LHV9lChoBkdAkgm0q2Bre2gHTegDaAhHQKli8D/2kBV1fZQoaAZHQJbqSFlCkXVoB03oA2gIR0CpZWWP1ct5dX2UKGgGR0CZvhTNMXabaAdN6ANoCEdAqWcFZLZi/nV9lChoBkdAl84dG3F1jmgHTegDaAhHQKlwr655JK91fZQoaAZHQJHC450bLlpoB03oA2gIR0Cpcp8gyM1kdX2UKGgGR0CaEmtdiUgTaAdN6ANoCEdAqXUdo371qXV9lChoBkdAg1zVLBbfQGgHTegDaAhHQKl2yoqCpWF1fZQoaAZHQJi1gchkiEBoB03oA2gIR0CpgCPh60IDdX2UKGgGR0CZ4vJGvwEyaAdN6ANoCEdAqYH2i1y/9HV9lChoBkdAmQ85u/Dcd2gHTegDaAhHQKmEkFL39Jl1fZQoaAZHQJnOIhY/3WZoB03oA2gIR0CphhWxyGSIdX2UKGgGR0Cec0LOiWVvaAdN6ANoCEdAqY9y7oSteXV9lChoBkdAngvOmBOHnGgHTegDaAhHQKmRdiobXH11fZQoaAZHQJtkINmUW2xoB03oA2gIR0Cpk9ff4yoGdX2UKGgGR0Cb4vTz/ZM+aAdN6ANoCEdAqZV1nmJWNnV9lChoBkdAnL9YNd7fHmgHTegDaAhHQKmeyoS+QEJ1fZQoaAZHQJqxUqUeMhpoB03oA2gIR0CpoFWL5ylvdX2UKGgGR0CZ/ZZSeiBYaAdN6ANoCEdAqaJRbQkX13V9lChoBkdAnb9ceCCjDmgHTegDaAhHQKmjn9aUzKt1fZQoaAZHQJ8RCpMpPRBoB03oA2gIR0Cpq07OE/SqdX2UKGgGR0CbbFDSgGr0aAdN6ANoCEdAqazj5RCQcXV9lChoBkdAnCB2j9GZu2gHTegDaAhHQKmu7fWtlqd1fZQoaAZHQJpaYvcrRShoB03oA2gIR0CpsC1bqyGBdX2UKGgGR0CandSpR4yHaAdN6ANoCEdAqbe8CV8kU3V9lChoBkdAnJcSqEOAiGgHTegDaAhHQKm5Ws7uDz11fZQoaAZHQJUjiufVZs9oB03oA2gIR0Cpu2W9L6DXdX2UKGgGR0CZ6SxUNrj6aAdN6ANoCEdAqbynHLida3VlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bb19d2b4ef66201c984636ad456053f52cb93ba5994a7f127f73cecbfc87164
|
3 |
+
size 55998
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:056ea1f5331e7df702ecc20c1c929f03a29003c7401c15b0785529a783619a7a
|
3 |
+
size 56638
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc42d99da70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc42d99db00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc42d99db90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc42d99dc20>", "_build": "<function ActorCriticPolicy._build at 0x7fc42d99dcb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc42d99dd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc42d99ddd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc42d99de60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc42d99def0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc42d99df80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc42d923050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc42d965ab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662527913.549982, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAARwewvWB2cL+5BIE+JjYfP1HogL7AIZ0+b1gQv2Fmirv/TWk++7ffPsjvvDz24zI+gQrhvRzo3L47w9E+8wfUvxoFjj89S6y+MocuvzIvqD6pCRq/siPFP4d1KT6Gu4W/AU6Gv7Gs8T4NV/0+uUCYvy/bjT7RQBI+oq8YP7fgGj8nObu/t7tMP8tjgb9lWBu+Wnw+P82wBT22leG9S7sEvrQQe7+lyfm/1z8DP9ihE8CvMFk/Shq3vnXvn7+IzDu+usLAPf7oyD8jv4A+B1cNwAFOhr9YlgfADVf9PrlAmL/JTg0/XNMyv5r31D5MbG8/0lGCvqM7iz0pgHe9yhKuv+xiLj8NGFe/JEGaP1dnor7gTpu/2oVhPsEe8b6Xpp4+wZKCPglbQL8TWQ8/qfsmQPpunzyjsG+/XC0ivvU+Oz6F+3M/sazxPg1X/T65QJi/hVW9PvlNv79BZtG+5DULvqQhyL+TVwK/3nlGvgY9eL/TWzc/T+BCv76GYD93XwO+yoaTv5H/BsC0oXC+Tx2Av/llCz8pd4O/MyoRPbW0D7+dDMO+iatPP0eDKD/f4nW9AU6Gv7Gs8T4NV/0+uUCYv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJMfzDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBZyw++AAAAADwE278AAAAA0iPtPAAAAACWruY/AAAAAOaFIL0AAAAA723rPwAAAAA1UwW+AAAAAPcA4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSgww0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAp5ChPAAAAACMVvy/AAAAAIxiGb0AAAAALCXvPwAAAADzkKY9AAAAACNg6T8AAAAApRCJPAAAAABmn9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApEXDNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBp0jTwAAAAAafjyvwAAAACSEm49AAAAAB0sAEAAAAAAB97pPQAAAACcXOA/AAAAAOsgBj4AAAAAbpnvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPGh/jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQoga8AAAAAJ4e8b8AAAAARlT0PQAAAABq8/0/AAAAAFxWqj0AAAAAyajjPwAAAABwwvO9AAAAAKuT/78AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJNjsmShakiMAWyUTegDjAF0lEdAqHJl49ovjHV9lChoBkdAlym1XA/LT2gHTegDaAhHQKhz/TuOS4h1fZQoaAZHQJZst26kIopoB03oA2gIR0CodfoToMa1dX2UKGgGR0CV9Hsi0OVgaAdN6ANoCEdAqHc8580DU3V9lChoBkdAmUY82eg+QmgHTegDaAhHQKh++Qrc0tR1fZQoaAZHQJlYCE25xzdoB03oA2gIR0CogJ+lbeMydX2UKGgGR0CZPCxG2CumaAdN6ANoCEdAqIKrAgxJunV9lChoBkdAloPILgGbC2gHTegDaAhHQKiEAS39aU11fZQoaAZHQJkjhoXbdrRoB03oA2gIR0Coi8aJAMUidX2UKGgGR0CYtglS0jTsaAdN6ANoCEdAqI1Y1FYuCnV9lChoBkdAmQpt8E3bVWgHTegDaAhHQKiPZtYSxqx1fZQoaAZHQJkBglRgqmVoB03oA2gIR0CokLMpw0fpdX2UKGgGR0CdDCgaFVT8aAdN6ANoCEdAqJhrYNAkcHV9lChoBkdAnPGk0WM0g2gHTegDaAhHQKiZ/SfDk2h1fZQoaAZHQJxKS5oXbdtoB03oA2gIR0ConAK4QSSNdX2UKGgGR0CaVeuGbkOqaAdN6ANoCEdAqJ1HAuZkTnV9lChoBkdAmp87g88s+WgHTegDaAhHQKik3JRO1v51fZQoaAZHQJ0cpaV2Rq5oB03oA2gIR0Copm9U0elsdX2UKGgGR0CY1Ap1zQu3aAdN6ANoCEdAqKhtqQA+6nV9lChoBkdAnAa3N5dGAmgHTegDaAhHQKiptxy4nWt1fZQoaAZHQJlKdUVBUrFoB03oA2gIR0CosWCkoF3ZdX2UKGgGR0CUkmY6GQCCaAdN6ANoCEdAqLLwvvjOs3V9lChoBkdAlB5cf3evZGgHTegDaAhHQKi08Z0jkdV1fZQoaAZHQJRf3rB0p3JoB03oA2gIR0Cotk0zTF2ndX2UKGgGR0CWKFcgyM1kaAdN6ANoCEdAqL4JF1B+nnV9lChoBkdAl0i9liBoVWgHTegDaAhHQKi/oHbAUL51fZQoaAZHQJBSOmygPEtoB03oA2gIR0CowaM2eg+RdX2UKGgGR0COX/ozvZyuaAdN6ANoCEdAqMLsxO+IuXV9lChoBkdAldfODaoMrmgHTegDaAhHQKjK0bJfYz11fZQoaAZHQI9sk56t1ZFoB03oA2gIR0CozHXGff4zdX2UKGgGR0CUPKfKISDiaAdN6ANoCEdAqM5/DUExI3V9lChoBkdAig3rTpgTiGgHTegDaAhHQKjPyLb5/LF1fZQoaAZHQJXApIe5nUVoB03oA2gIR0Co15ZHEuQIdX2UKGgGR0CdY/qJuVHGaAdN6ANoCEdAqNlF4qwyI3V9lChoBkdAkAA3xz7uUmgHTegDaAhHQKjbTC9h7Vt1fZQoaAZHQJtZxhnanJloB03oA2gIR0Co3Jp0nw5OdX2UKGgGR0CVGoRzzVc2aAdN6ANoCEdAqORFnK4hEHV9lChoBkdAkf/hOk+HJ2gHTegDaAhHQKjmDULDye91fZQoaAZHQJoIq5tm+TNoB03oA2gIR0Co6BZooNNKdX2UKGgGR0CTZWl9jPOZaAdN6ANoCEdAqOliSq2jPHV9lChoBkdAnFEEp3HJcWgHTegDaAhHQKjxIOEug6F1fZQoaAZHQJgyJJ8OTaFoB03oA2gIR0Co8rVmJ3xGdX2UKGgGR0CaxSe/5+H8aAdN6ANoCEdAqPS+hufmLnV9lChoBkdAmzZTQ7cO9WgHTegDaAhHQKj2RiZv1lJ1fZQoaAZHQJ9Zz5P/JeVoB03oA2gIR0Co/lDlHSWrdX2UKGgGR0Ca6kIxgy/LaAdN6ANoCEdAqP/iYgJTl3V9lChoBkdAm62+eBg/kmgHTegDaAhHQKkB5HuJDVp1fZQoaAZHQJy4XYBeXzFoB03oA2gIR0CpAyTabnX/dX2UKGgGR0Cf2mECvHLiaAdN6ANoCEdAqQrLmbLEDXV9lChoBkdAnbiUZzgdfmgHTegDaAhHQKkMhzPKMeh1fZQoaAZHQJpDbj/+85FoB03oA2gIR0CpDpE5QxetdX2UKGgGR0CabMGLk0aZaAdN6ANoCEdAqRAao0hvBXV9lChoBkdAnO+z+m3vyGgHTegDaAhHQKkXxUvPC2t1fZQoaAZHQJ2hBXmvGIdoB03oA2gIR0CpGVLSuyNXdX2UKGgGR0BqiXGACnxbaAdN6ANoCEdAqRthRdhRZXV9lChoBkdAnL10oWpIc2gHTegDaAhHQKkcyAkLQX11fZQoaAZHQJnszub7TDxoB03oA2gIR0CpJYA1vVEvdX2UKGgGR0B3YMXP7el9aAdN6ANoCEdAqScaXWvr4XV9lChoBkdAfQCuAZsKs2gHTegDaAhHQKkpas052hZ1fZQoaAZHQJsbJQizLOloB03oA2gIR0CpKtTsQd0adX2UKGgGR0CZqdV/+bVjaAdN6ANoCEdAqTVn2K2rn3V9lChoBkdAgSSGZeAuqWgHTegDaAhHQKk2/jZteld1fZQoaAZHQJyI52U0Nz9oB03oA2gIR0CpOTgsTWXkdX2UKGgGR0CIk3KzRhMKaAdN6ANoCEdAqTqePtD2J3V9lChoBkdAm4XpOBUaQ2gHTegDaAhHQKlCqxUvPC51fZQoaAZHQJm7zd56dDpoB03oA2gIR0CpRIw0GeMAdX2UKGgGR0CbLQXiR4hVaAdN6ANoCEdAqUbtYOlO5HV9lChoBkdAnO/HGn4wiGgHTegDaAhHQKlIfuNPxhF1fZQoaAZHQJj+WSV4X41oB03oA2gIR0CpUWSdOIqLdX2UKGgGR0Ca4A3trsSkaAdN6ANoCEdAqVNkJrtVrHV9lChoBkdAmJtX1WbPQmgHTegDaAhHQKlVzflZHNJ1fZQoaAZHQJhVRWXC0nhoB03oA2gIR0CpV2nlfZ27dX2UKGgGR0CbbGcnE2pAaAdN6ANoCEdAqWD2mvW6LHV9lChoBkdAkgm0q2Bre2gHTegDaAhHQKli8D/2kBV1fZQoaAZHQJbqSFlCkXVoB03oA2gIR0CpZWWP1ct5dX2UKGgGR0CZvhTNMXabaAdN6ANoCEdAqWcFZLZi/nV9lChoBkdAl84dG3F1jmgHTegDaAhHQKlwr655JK91fZQoaAZHQJHC450bLlpoB03oA2gIR0Cpcp8gyM1kdX2UKGgGR0CaEmtdiUgTaAdN6ANoCEdAqXUdo371qXV9lChoBkdAg1zVLBbfQGgHTegDaAhHQKl2yoqCpWF1fZQoaAZHQJi1gchkiEBoB03oA2gIR0CpgCPh60IDdX2UKGgGR0CZ4vJGvwEyaAdN6ANoCEdAqYH2i1y/9HV9lChoBkdAmQ85u/Dcd2gHTegDaAhHQKmEkFL39Jl1fZQoaAZHQJnOIhY/3WZoB03oA2gIR0CphhWxyGSIdX2UKGgGR0Cec0LOiWVvaAdN6ANoCEdAqY9y7oSteXV9lChoBkdAngvOmBOHnGgHTegDaAhHQKmRdiobXH11fZQoaAZHQJtkINmUW2xoB03oA2gIR0Cpk9ff4yoGdX2UKGgGR0Cb4vTz/ZM+aAdN6ANoCEdAqZV1nmJWNnV9lChoBkdAnL9YNd7fHmgHTegDaAhHQKmeyoS+QEJ1fZQoaAZHQJqxUqUeMhpoB03oA2gIR0CpoFWL5ylvdX2UKGgGR0CZ/ZZSeiBYaAdN6ANoCEdAqaJRbQkX13V9lChoBkdAnb9ceCCjDmgHTegDaAhHQKmjn9aUzKt1fZQoaAZHQJ8RCpMpPRBoB03oA2gIR0Cpq07OE/SqdX2UKGgGR0CbbFDSgGr0aAdN6ANoCEdAqazj5RCQcXV9lChoBkdAnCB2j9GZu2gHTegDaAhHQKmu7fWtlqd1fZQoaAZHQJpaYvcrRShoB03oA2gIR0CpsC1bqyGBdX2UKGgGR0CandSpR4yHaAdN6ANoCEdAqbe8CV8kU3V9lChoBkdAnJcSqEOAiGgHTegDaAhHQKm5Ws7uDz11fZQoaAZHQJUjiufVZs9oB03oA2gIR0Cpu2W9L6DXdX2UKGgGR0CZ6SxUNrj6aAdN6ANoCEdAqbynHLida3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a46223702555b99e8c60ed0dbb0fc514577664e36fca741973e8a9a0a5d9491
|
3 |
+
size 1059739
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1704.4737002222246, "std_reward": 175.74046256240925, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-07T06:28:10.009509"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b393f1306138c17cd0dd70bf09e6ae8c93e40a66f435fa4a028cbcec113e5ac6
|
3 |
+
size 2371
|