File size: 4,994 Bytes
de0e4d7 ddb5e23 de0e4d7 5fd9f1c ddb5e23 de0e4d7 5fd9f1c 9a31516 ecd5a70 de0e4d7 5fd9f1c de0e4d7 5fd9f1c de0e4d7 5fd9f1c de0e4d7 ddb5e23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
- alpaca
- mistral
base_model:
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
model-index:
- name: Kunocchini-7b-128k-test
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.98
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.62
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.35
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 52.31
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-7b-128k-test
name: Open LLM Leaderboard
---
Thanks to @Epiculous for the dope model/ help with llm backends and support overall.
Id like to also thank @kalomaze for the dope sampler additions to ST.
@SanjiWatsuki Thank you very much for the help, and the model!
ST users can find the TextGenPreset in the folder labeled so.
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642265bc01c62c1e4102dc36/9obNSalcJqCilQwr_4ssM.jpeg)
Quants: Thank You @s3nh! https://huggingface.co/s3nh/Kunocchini-7b-128k-test-GGUF and @bartowski https://huggingface.co/bartowski/Kunocchini-7b-128k-test-exl2
Thanks To @Lewdiculus for the Imatrix gguf quants: https://huggingface.co/Lewdiculous/Kunocchini-7b-128k-test-GGUF-Imatrix
The following models were included in the merge:
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context](https://huggingface.co/Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: SanjiWatsuki/Kunoichi-DPO-v2-7B
layer_range: [0, 32]
- model: Epiculous/Fett-uccine-Long-Noodle-7B-120k-Context
layer_range: [0, 32]
merge_method: slerp
base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Test157t__Kunocchini-7b-128k-test)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.24|
|AI2 Reasoning Challenge (25-Shot)|66.98|
|HellaSwag (10-Shot) |85.62|
|MMLU (5-Shot) |61.27|
|TruthfulQA (0-shot) |59.35|
|Winogrande (5-shot) |77.90|
|GSM8k (5-shot) |52.31|
|