File size: 32,456 Bytes
d304ecf
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
 
 
d304ecf
 
 
 
 
 
 
 
7b8a04a
d304ecf
 
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
 
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
 
7b8a04a
 
 
d304ecf
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
 
 
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
 
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
 
7b8a04a
 
 
d304ecf
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
 
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
d304ecf
7b8a04a
d304ecf
 
 
 
 
 
 
 
7b8a04a
d304ecf
 
7b8a04a
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
 
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b8a04a
d304ecf
7b8a04a
 
d304ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
{
  "graph": {
    "nodes": [
      {
        "node": {
          "id": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
          "properties": {
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "nodeType": "computation",
            "timestamp": "2024-01-29T15:58:37Z",
            "vcRegistrationsJcs": ["urn:cid:baga6yaq6ebnt3hgw3nmnnmprnfakxwqiaxfilhhkc3n7dd2mrbxi6kf7kawbw"],
            "jcsCID": "urn:cid:baga6yaq6eaepmsdyqrnqmz3lz5dyrdxro3mqrntnnwiiyxweqgm2aekfpzwlm",
            "operatedBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
          }
        },
        "enrichments": {}
      },
      {
        "node": {
          "id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m",
          "properties": {
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "dataRegistrationJcs": "urn:cid:baga6yaq6ec4whnu5avsfe4hyq2t5ap6v65llq6zydvomcsiypbg6euxx6kidi",
            "nodeType": "data",
            "timestamp": "2024-01-29T15:58:37Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 106,
            "asset_name": "Normalized NoPattern CRASH REPORT Imagery",
            "owning_project": "NoPattern Rorschach",
            "asset_description": "1024x1024 white background images of - CRASH REPORT was a self-published, 72-page book by NoPattern Studio released in November, 2019. Limited to an edition of 300, the book contained a year's worth of experimental, exploratory 3D imagery generated entirely in Photoshop. The concept behind the book deals with our relationship to working creatively with imperfect technology and learning to embrace errors and interruptions.",
            "asset_format": "Images",
            "asset_type": "Dataset",
            "asset_blob_type": "iroh-collection",
            "source_location_url": "",
            "contact_info": "https://nopattern.com/Info",
            "license": "Copyright NoPattern Studio Chicago 2024. All rights reserved.",
            "license_link": "https://nopattern.com/",
            "registered_date": "2024-01-29T16:00:32.381507Z",
            "last_modified_date": "2024-01-29T16:00:32.381507Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ifxrye76qsvscdwy4odbqxszodph7xkhmtk3bvfb2aywwfkrchf4i",
          "properties": {
            "nodeType": "data",
            "dataRegistrationJcs": "urn:cid:baga6yaq6ea4f3ggulis6er5ip44bfpo2jlprkm4jcw272bgem2pz7fvxxdeua",
            "timestamp": "2024-01-29T15:59:12Z",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 105,
            "asset_name": "metadata.jsonl",
            "owning_project": "AI-Captioned Dataset Conversion",
            "asset_description": "The 'metadata.jsonl' file is the output of the 'convert_to_json.py' script. It contains AI-generated captions from the 'desc.csv' file, now formatted in newline JSON (JSONL). Each line of the file is a separate JSON object, making it suitable for streamlined processing in various data analysis and machine learning applications.",
            "asset_format": "JSONL (Newline JSON)",
            "asset_type": "Dataset",
            "asset_blob_type": "",
            "source_location_url": "",
            "contact_info": "",
            "license": "Non - commercial",
            "license_link": "",
            "registered_date": "2024-01-29T16:00:32.315359Z",
            "last_modified_date": "2024-01-29T16:00:32.315359Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "properties": {
            "timestamp": "2024-01-29T16:00:24Z",
            "operatedBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "nodeType": "computation",
            "jcsCID": "urn:cid:baga6yaq6ecv3jxizi6mequnttcp6mxetice7gtperf5xkh7syjcqvg37id5x4",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "vcRegistrationsJcs": ["urn:cid:baga6yaq6eatc33h6gj4rzaisnns2mz5deqvjze2abqgbampr2plj34bi4tn52"]
          }
        },
        "enrichments": {}
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ihh57vo2fq2imhen3ak6i6pksohtlqwhoctcvjrqhbypzunmbv6j4",
          "properties": {
            "nodeType": "data",
            "timestamp": "2024-01-29T16:00:22Z",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "dataRegistrationJcs": "urn:cid:baga6yaq6eakw4oxifelrw4kvr4o6tjdwytie4hgzp5pozzdk76ozoz6f22dwg"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 102,
            "asset_name": "SDXL-Turbo",
            "owning_project": "Stability AI",
            "asset_description": "SDXL-Turbo is a distilled version of SDXL 1.0, trained for real-time synthesis. It uses Adversarial Diffusion Distillation (ADD) for sampling large-scale foundational image diffusion models in 1 to 4 steps with high image quality. This approach combines score distillation with an adversarial loss, leveraging large-scale image diffusion models as a teacher signal to ensure high fidelity in low-step sampling.",
            "asset_format": "PyTorch",
            "asset_type": "Model",
            "asset_blob_type": "iroh-collection",
            "source_location_url": "",
            "contact_info": "Refer to the official Stability AI channels or the technical report for contact information.",
            "license": "sai-nc-community",
            "license_link": "https://huggingface.co/stabilityai/sdxl-turbo/blob/main/LICENSE.TXT",
            "registered_date": "2024-01-29T16:00:32.147672Z",
            "last_modified_date": "2024-01-29T16:00:32.147672Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ihjtsf3mnk5knzcv5rsql5flz2qm4x2kj7tqw2t3ukgtwyy7kixny",
          "properties": {
            "nodeType": "data",
            "timestamp": "2024-01-29T16:00:23Z",
            "dataRegistrationJcs": "urn:cid:baga6yaq6eacodu4hepmrm2sogq3kirqr47xi6prup32tytlhkabvsxffqls3s",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 98,
            "asset_name": "style-transfer-pytorch",
            "owning_project": "",
            "asset_description": "An implementation of neural style transfer in PyTorch, supporting CPUs and Nvidia GPUs. It offers automatic multi-scale stylization for high-quality high-resolution outputs, compatible even up to print resolution. The code supports dual GPU usage for higher maximum resolution. Modifications from the original algorithm include the use of PyTorch pre-trained VGG-19 weights, 'replicate' padding mode in the first layer of VGG-19, scaled results for average/L2 pooling, Wasserstein-2 style loss, an exponential moving average over iterates, warm-starting of the Adam optimizer, non-equal weights for style layers, and progressive scaling of image stylization.",
            "asset_format": "PyTorch",
            "asset_type": "Code",
            "asset_blob_type": "iroh-collection",
            "source_location_url": "",
            "contact_info": "https://twitter.com/RiversHaveWings",
            "license": "MIT",
            "license_link": "https://github.com/crowsonkb/style-transfer-pytorch/blob/master/LICENSE",
            "registered_date": "2024-01-29T16:00:31.86777Z",
            "last_modified_date": "2024-01-29T16:00:31.86777Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ibolvbapfc6uckeqb3nlxw3zbecufb7m2i65mgfkbp35elxmqhsdy",
          "properties": {
            "nodeType": "data",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "timestamp": "2024-01-29T16:00:23Z",
            "dataRegistrationJcs": "urn:cid:baga6yaq6easfw34bfqzruffkg3cfcv5zelaeoq7eqlnguaefgyqn7b5y2xs6a"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 99,
            "asset_name": "unofficial-SDXL-Turbo-i2i-t2i",
            "owning_project": "NoPattern Project",
            "asset_description": "An application for image-to-image (i2i) and text-to-image (t2i) generation using the SDXL-Turbo model. It was developed for the 'No Pattern' project, showcasing the model's capability in image synthesis based on textual and visual inputs.",
            "asset_format": "Python",
            "asset_type": "Code",
            "asset_blob_type": "iroh-collection",
            "source_location_url": "",
            "contact_info": "https://twitter.com/radamar",
            "license": "refer to developer",
            "license_link": "https://twitter.com/radamar",
            "registered_date": "2024-01-29T16:00:31.92389Z",
            "last_modified_date": "2024-01-29T16:00:31.92389Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ieew2ui4vcemfibfbv4csgykzf7bz3pk3gmx3zdahupph7tv26jfm",
          "properties": {
            "nodeType": "data",
            "dataRegistrationJcs": "urn:cid:baga6yaq6eck5l2xjlngsomwfos67jz2ohieh344zqru3xvunibf2trxiuqyea",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "timestamp": "2024-01-29T16:00:24Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 103,
            "asset_name": "VGG-19",
            "owning_project": "ImageNet Challenge 2014",
            "asset_description": "VGG-19 is a convolutional neural network that is 19 layers deep. It was developed by Karen Simonyan and Andrew Zisserman. The model is notable for its depth and the use of very small (3x3) convolution filters. VGG-19 achieved significant improvements in accuracy in large-scale image recognition by increasing network depth. It was part of the ImageNet Challenge 2014 submission, where it performed exceptionally well in the localisation and classification tracks. The pretrained network is capable of classifying images into 1000 categories and is widely used for various computer vision tasks.",
            "asset_format": "PyTorch",
            "asset_type": "Model",
            "asset_blob_type": "",
            "source_location_url": "",
            "contact_info": "Refer to the original paper or the PyTorch official channels for contact information.",
            "license": "Refer to the PyTorch repository for licensing information.",
            "license_link": "",
            "registered_date": "2024-01-29T16:00:32.203438Z",
            "last_modified_date": "2024-01-29T16:00:32.203438Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ifpcne3t5pzugtkaqcn5i3nzskjtpfslsnnyejlpte2spfoihzsmi",
          "properties": {
            "dataRegistrationJcs": "urn:cid:baga6yaq6edgteubsc6ptupw5ftqbau5sphzghkrxxqvbsdw3plczkd7s3eurq",
            "nodeType": "data",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "timestamp": "2024-01-29T16:00:24Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 108,
            "asset_name": "NoPattern Roarshac",
            "owning_project": "NoPattern Rorschach",
            "asset_description": "The NoPattern Roarshac Model is a generative AI model that allows users to transform images from NoPattern's 'CRASH REPORT' into unique generative creations. This model leverages the artistic content of the 'CRASH REPORT', a 72-page book of experimental 3D imagery, to enable users to find and create their own patterns within NoPattern's art. It embodies the concept of working creatively with imperfect technology and embracing errors and interruptions, as explored in the original 'CRASH REPORT'.",
            "asset_format": "Generative AI",
            "asset_type": "Model",
            "asset_blob_type": "",
            "source_location_url": "",
            "contact_info": "https://nopattern.com/Info",
            "license": "Copyright NoPattern Studio Chicago 2024. All rights reserved.",
            "license_link": "https://nopattern.com/",
            "registered_date": "2024-01-29T16:00:32.506622Z",
            "last_modified_date": "2024-01-29T16:00:32.506622Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ien22v3j5s6h22rffqenihyzenyh23bln4ir46mbrk3lqjusgbevi",
          "properties": {
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "nodeType": "data",
            "dataRegistrationJcs": "urn:cid:baga6yaq6edtsf5pjack4uz3mwmkr3spgljq2chisbqkf7libfwulrfohxqgby",
            "timestamp": "2024-01-29T15:59:03Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 107,
            "asset_name": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
            "owning_project": "LAION-2B",
            "asset_description": "A CLIP ViT-H/14 model trained using the LAION-2B English subset of LAION-5B, utilizing OpenCLIP. The model, developed by Romain Beaumont on the stability.ai cluster, is designed for zero-shot, arbitrary image classification and aims to aid research in understanding the potential impact of such models.",
            "asset_format": "OpenCLIP",
            "asset_type": "Model",
            "asset_blob_type": "iroh-collection",
            "source_location_url": "",
            "contact_info": "Refer to Hugging Face's official channels for contact information.",
            "license": "MIT",
            "license_link": "https://doi.org/10.5281/zenodo.5143773",
            "registered_date": "2024-01-29T16:00:32.444151Z",
            "last_modified_date": "2024-01-29T16:00:32.444151Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "properties": {
            "vcRegistrationsJcs": ["urn:cid:baga6yaq6eauf5h3zyu7k5bc5toy47ou5uoxvlwlzcsewywdnohmsoig6opiou"],
            "operatedBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "nodeType": "computation",
            "timestamp": "2024-01-29T15:59:12Z",
            "jcsCID": "urn:cid:baga6yaq6edlbrkeexnnhmuvijdai2ydhmc7it7jlkvsrluhzqhti3gdyjbtig",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
          }
        },
        "enrichments": {}
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ifay6uimdc6iv7a5kblryg2zf6nf6nywyuvuut52227xvlcnzzleu",
          "properties": {
            "dataRegistrationJcs": "urn:cid:baga6yaq6ebn6ucx7ix24yuqoksaurftohczlldwfpqw22rznwufksfr7ovg7i",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "nodeType": "data",
            "timestamp": "2024-01-29T15:59:12Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 104,
            "asset_name": "BLIP: Bootstrapping Language-Image Pre-training",
            "owning_project": "Salesforce Research",
            "asset_description": "BLIP is a versatile model capable of performing tasks such as Visual Question Answering, Image-Text Retrieval, and Image Captioning. Developed by Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi, it utilizes Vision-Language Pre-training (VLP) to excel in both understanding-based and generation-based tasks. The model's efficacy is showcased through state-of-the-art results in various vision-language tasks.",
            "asset_format": "PyTorch",
            "asset_type": "Model",
            "asset_blob_type": "iroh-collection",
            "source_location_url": "",
            "contact_info": "Refer to the original paper or Salesforce's official channels for contact information.",
            "license": "bsd-3-clause",
            "license_link": "https://opensource.org/license/bsd-3-clause/",
            "registered_date": "2024-01-29T16:00:32.259189Z",
            "last_modified_date": "2024-01-29T16:00:32.259189Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4iapgxcitooymy4r4ol2ndbnca5l2pvp74ioatyrmkeg2ath4wcozq",
          "properties": {
            "dataRegistrationJcs": "urn:cid:baga6yaq6ebt3lag6yclf3kvthia254sfq6ynfh4vdjpxtbqfayfxynthvo5x6",
            "nodeType": "data",
            "timestamp": "2024-01-29T15:59:12Z",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 101,
            "asset_name": "CLIP Interrogator",
            "owning_project": "CLIP Interrogator",
            "asset_description": "The CLIP Interrogator is a prompt engineering tool that leverages OpenAI's CLIP and Salesforce's BLIP models. It optimizes text prompts to match images, aiding in the use of text-to-image models like Stable Diffusion for artistic creation. Developed by pharmapsychotic, it's a novel tool for artists and creators.",
            "asset_format": "Jupyter Notebook",
            "asset_type": "Code",
            "asset_blob_type": "",
            "source_location_url": "",
            "contact_info": "https://pharmapsychotic.com, Twitter: @pharmapsychotic",
            "license": "MIT",
            "license_link": "https://opensource.org/licenses/MIT",
            "registered_date": "2024-01-29T16:00:32.089085Z",
            "last_modified_date": "2024-01-29T16:00:32.089085Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ieudbqko5jn3kkwhtkcje4nflw2bzitm26lurm2bphgddtulqvivu",
          "properties": {
            "nodeType": "data",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "dataRegistrationJcs": "urn:cid:baga6yaq6ecbq3r37leu53ooxxiq2yq7qkxuhxten6vim4232h57kzrz5vugk2",
            "timestamp": "2024-01-29T15:59:12Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 109,
            "asset_name": "AI-Captioned Dataset",
            "owning_project": "No Pattern - CRASH REPORT",
            "asset_description": "This dataset, named 'desc.csv', consists of AI-generated captions for images from the 'No Pattern - CRASH REPORT'. The captions were generated using the CLIP Interrogator, a tool that employs OpenAI's CLIP and Salesforce's BLIP models to optimize text prompts for images. The dataset offers unique insights into AI's interpretation of visual content.",
            "asset_format": "CSV",
            "asset_type": "Dataset",
            "asset_blob_type": "",
            "source_location_url": "",
            "contact_info": "",
            "license": "Dependent on the licensing of the source images and the CLIP Interrogator tool",
            "license_link": "Non-commercial",
            "registered_date": "2024-01-29T16:00:32.562955Z",
            "last_modified_date": "2024-01-29T16:00:32.562955Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
          "properties": {
            "jcsCID": "urn:cid:baga6yaq6eaywa6buvdncfajqgh5pqvwe6mni5ajko5qyy72imfkik6jmzyj4e",
            "timestamp": "2024-01-29T15:59:12Z",
            "operatedBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "vcRegistrationsJcs": ["urn:cid:baga6yaq6ea4pydrkxuufdpaswb2xnbg6medybree2pgr6od734s73mmmgvpj2"],
            "nodeType": "computation"
          }
        },
        "enrichments": {}
      },
      {
        "node": {
          "id": "urn:cid:bafkr4iauvrrmfbm4oiiqex4e7qazphp4sxe67brr7dld2rhwqkfutkd6va",
          "properties": {
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "dataRegistrationJcs": "urn:cid:baga6yaq6eb5z53fkpc3mcrwfn6rnhpky7cfupzavbykfbon5djjwtopyz6b2c",
            "nodeType": "data",
            "timestamp": "2024-01-29T15:59:12Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 97,
            "asset_name": "convert to json py",
            "owning_project": "Rorschach",
            "asset_description": "A Python script named 'convert_to_json.py' that converts the 'desc.csv' file to json lines, containing AI-generated captions for images, into a JSON format. This script facilitates the easy integration and processing of the captioned data in various applications that require JSON format.",
            "asset_format": "Python",
            "asset_type": "Code",
            "asset_blob_type": "",
            "source_location_url": "",
            "contact_info": "backnotprop",
            "license": "no license",
            "license_link": "no license link",
            "registered_date": "2024-01-29T16:00:31.797419Z",
            "last_modified_date": "2024-01-29T16:00:31.797419Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4iefsxz5zzn2fx2zpklogxgj3hndx2mbmirxcztz5lyg342jtstk2u",
          "properties": {
            "nodeType": "data",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "dataRegistrationJcs": "urn:cid:baga6yaq6ecepwli7roalih3iswoppengibpa2qmkj4eg4twqlx7uofat5bods",
            "timestamp": "2024-01-29T15:58:37Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 100,
            "asset_name": "NoPattern - CRASH REPORT",
            "owning_project": "NoPattern Rorschach",
            "asset_description": "CRASH REPORT was a self-published, 72-page book by NoPattern Studio released in November, 2019. Limited to an edition of 300, the book contained a year's worth of experimental, exploratory 3D imagery generated entirely in Photoshop. The concept behind the book deals with our relationship to working creatively with imperfect technology and learning to embrace errors and interruptions.",
            "asset_format": "Images",
            "asset_type": "Dataset",
            "asset_blob_type": "iroh-collection",
            "source_location_url": "",
            "contact_info": "https://nopattern.com/Info",
            "license": "Copyright NoPattern Studio Chicago 2024. All rights reserved.",
            "license_link": "https://nopattern.com/",
            "registered_date": "2024-01-29T16:00:31.997347Z",
            "last_modified_date": "2024-01-29T16:00:31.997348Z"
          }
        }
      },
      {
        "node": {
          "id": "urn:cid:bafkr4ieqv4gkv6vvpb3twx2qdrg3p76evukyhgbtc6zyqo4cmktx6fj56q",
          "properties": {
            "dataRegistrationJcs": "urn:cid:baga6yaq6eajymqff5koge2wpehyoh45i6kzkl4ix6yrpz4yloxvhpd6omc3rm",
            "registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
            "nodeType": "data",
            "timestamp": "2024-01-29T15:58:37Z"
          }
        },
        "enrichments": {
          "asset_hub": {
            "asset_id": 96,
            "asset_name": "normalize.py",
            "owning_project": "NoPattern Rorschach",
            "asset_description": "Converts NoPattern Images to 1024x1024 white background images",
            "asset_format": "python",
            "asset_type": "Code",
            "asset_blob_type": "",
            "source_location_url": "",
            "contact_info": "https://nopattern.com/Info",
            "license": "Copyright NoPattern Studio Chicago 2024. All rights reserved.",
            "license_link": "https://nopattern.com/",
            "registered_date": "2024-01-29T16:00:31.737289Z",
            "last_modified_date": "2024-01-29T16:00:31.73729Z"
          }
        }
      }
    ],
    "edges": [
      {
        "edge": {
          "id": "3134cd82-9bd5-4e11-9fb1-69fd0ca6abe9",
          "source_id": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
          "target_id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m",
          "statement": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
          "label": "output"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "ccc32512-f1e6-43ee-b5ed-b6ab36375d73",
          "source_id": "urn:cid:bafkr4ifxrye76qsvscdwy4odbqxszodph7xkhmtk3bvfb2aywwfkrchf4i",
          "target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "0f52e75a-18e9-4fdc-9ae2-7d087ecf5e64",
          "source_id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m",
          "target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "e3c5fa25-1f7b-474c-a540-155edb7d1a43",
          "source_id": "urn:cid:bafkr4ihh57vo2fq2imhen3ak6i6pksohtlqwhoctcvjrqhbypzunmbv6j4",
          "target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "bd5f9f0e-6739-4cb0-8805-57cb1e17a9c4",
          "source_id": "urn:cid:bafkr4ihjtsf3mnk5knzcv5rsql5flz2qm4x2kj7tqw2t3ukgtwyy7kixny",
          "target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "7ab3061e-06bc-433e-8454-964bef6bba58",
          "source_id": "urn:cid:bafkr4ibolvbapfc6uckeqb3nlxw3zbecufb7m2i65mgfkbp35elxmqhsdy",
          "target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "a5726459-30f9-4dcc-a4b0-19f71ea1e1c3",
          "source_id": "urn:cid:bafkr4ieew2ui4vcemfibfbv4csgykzf7bz3pk3gmx3zdahupph7tv26jfm",
          "target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "426e4811-b281-4af5-9cf1-179886e03110",
          "source_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "target_id": "urn:cid:bafkr4ifpcne3t5pzugtkaqcn5i3nzskjtpfslsnnyejlpte2spfoihzsmi",
          "statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
          "label": "output"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "ca6c7b16-d442-4976-954c-bd78a72ca400",
          "source_id": "urn:cid:bafkr4ien22v3j5s6h22rffqenihyzenyh23bln4ir46mbrk3lqjusgbevi",
          "target_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "48ce193a-95de-46e9-b971-2d8468e7bb7a",
          "source_id": "urn:cid:bafkr4ifay6uimdc6iv7a5kblryg2zf6nf6nywyuvuut52227xvlcnzzleu",
          "target_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "8da6d8de-ef03-4323-b68e-831ac3f96460",
          "source_id": "urn:cid:bafkr4iapgxcitooymy4r4ol2ndbnca5l2pvp74ioatyrmkeg2ath4wcozq",
          "target_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "d2fd94bf-3738-4c0e-89d0-6e5080c67c91",
          "source_id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m",
          "target_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "56c675f4-c337-43f9-bc56-faf926f740ba",
          "source_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "target_id": "urn:cid:bafkr4ieudbqko5jn3kkwhtkcje4nflw2bzitm26lurm2bphgddtulqvivu",
          "statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
          "label": "output"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "32aea65b-5a16-4b76-a974-809a09859077",
          "source_id": "urn:cid:bafkr4ieudbqko5jn3kkwhtkcje4nflw2bzitm26lurm2bphgddtulqvivu",
          "target_id": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
          "statement": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "29c59065-bb6e-4d50-ab09-78cff27d4c07",
          "source_id": "urn:cid:bafkr4iauvrrmfbm4oiiqex4e7qazphp4sxe67brr7dld2rhwqkfutkd6va",
          "target_id": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
          "statement": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "a633e1d9-9b94-4c7e-91b2-a78e5a610bb7",
          "source_id": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
          "target_id": "urn:cid:bafkr4ifxrye76qsvscdwy4odbqxszodph7xkhmtk3bvfb2aywwfkrchf4i",
          "statement": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
          "label": "output"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "024d9b65-fcd0-42fe-b94c-ab84ddd067d1",
          "source_id": "urn:cid:bafkr4iefsxz5zzn2fx2zpklogxgj3hndx2mbmirxcztz5lyg342jtstk2u",
          "target_id": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
          "statement": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
          "label": "input"
        },
        "enrichments": {}
      },
      {
        "edge": {
          "id": "769578a3-d99c-43ce-812f-8aed6a4cd9e7",
          "source_id": "urn:cid:bafkr4ieqv4gkv6vvpb3twx2qdrg3p76evukyhgbtc6zyqo4cmktx6fj56q",
          "target_id": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
          "statement": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
          "label": "input"
        },
        "enrichments": {}
      }
    ]
  },
  "users": [
    {
      "id": 1,
      "username": "admin",
      "firstName": "",
      "lastName": "",
      "did": "",
      "status": "TRUSTED",
      "notes": null
    }
  ]
}