File size: 32,456 Bytes
d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf 7b8a04a d304ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
{
"graph": {
"nodes": [
{
"node": {
"id": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
"properties": {
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"nodeType": "computation",
"timestamp": "2024-01-29T15:58:37Z",
"vcRegistrationsJcs": ["urn:cid:baga6yaq6ebnt3hgw3nmnnmprnfakxwqiaxfilhhkc3n7dd2mrbxi6kf7kawbw"],
"jcsCID": "urn:cid:baga6yaq6eaepmsdyqrnqmz3lz5dyrdxro3mqrntnnwiiyxweqgm2aekfpzwlm",
"operatedBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
}
},
"enrichments": {}
},
{
"node": {
"id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m",
"properties": {
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"dataRegistrationJcs": "urn:cid:baga6yaq6ec4whnu5avsfe4hyq2t5ap6v65llq6zydvomcsiypbg6euxx6kidi",
"nodeType": "data",
"timestamp": "2024-01-29T15:58:37Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 106,
"asset_name": "Normalized NoPattern CRASH REPORT Imagery",
"owning_project": "NoPattern Rorschach",
"asset_description": "1024x1024 white background images of - CRASH REPORT was a self-published, 72-page book by NoPattern Studio released in November, 2019. Limited to an edition of 300, the book contained a year's worth of experimental, exploratory 3D imagery generated entirely in Photoshop. The concept behind the book deals with our relationship to working creatively with imperfect technology and learning to embrace errors and interruptions.",
"asset_format": "Images",
"asset_type": "Dataset",
"asset_blob_type": "iroh-collection",
"source_location_url": "",
"contact_info": "https://nopattern.com/Info",
"license": "Copyright NoPattern Studio Chicago 2024. All rights reserved.",
"license_link": "https://nopattern.com/",
"registered_date": "2024-01-29T16:00:32.381507Z",
"last_modified_date": "2024-01-29T16:00:32.381507Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4ifxrye76qsvscdwy4odbqxszodph7xkhmtk3bvfb2aywwfkrchf4i",
"properties": {
"nodeType": "data",
"dataRegistrationJcs": "urn:cid:baga6yaq6ea4f3ggulis6er5ip44bfpo2jlprkm4jcw272bgem2pz7fvxxdeua",
"timestamp": "2024-01-29T15:59:12Z",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 105,
"asset_name": "metadata.jsonl",
"owning_project": "AI-Captioned Dataset Conversion",
"asset_description": "The 'metadata.jsonl' file is the output of the 'convert_to_json.py' script. It contains AI-generated captions from the 'desc.csv' file, now formatted in newline JSON (JSONL). Each line of the file is a separate JSON object, making it suitable for streamlined processing in various data analysis and machine learning applications.",
"asset_format": "JSONL (Newline JSON)",
"asset_type": "Dataset",
"asset_blob_type": "",
"source_location_url": "",
"contact_info": "",
"license": "Non - commercial",
"license_link": "",
"registered_date": "2024-01-29T16:00:32.315359Z",
"last_modified_date": "2024-01-29T16:00:32.315359Z"
}
}
},
{
"node": {
"id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"properties": {
"timestamp": "2024-01-29T16:00:24Z",
"operatedBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"nodeType": "computation",
"jcsCID": "urn:cid:baga6yaq6ecv3jxizi6mequnttcp6mxetice7gtperf5xkh7syjcqvg37id5x4",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"vcRegistrationsJcs": ["urn:cid:baga6yaq6eatc33h6gj4rzaisnns2mz5deqvjze2abqgbampr2plj34bi4tn52"]
}
},
"enrichments": {}
},
{
"node": {
"id": "urn:cid:bafkr4ihh57vo2fq2imhen3ak6i6pksohtlqwhoctcvjrqhbypzunmbv6j4",
"properties": {
"nodeType": "data",
"timestamp": "2024-01-29T16:00:22Z",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"dataRegistrationJcs": "urn:cid:baga6yaq6eakw4oxifelrw4kvr4o6tjdwytie4hgzp5pozzdk76ozoz6f22dwg"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 102,
"asset_name": "SDXL-Turbo",
"owning_project": "Stability AI",
"asset_description": "SDXL-Turbo is a distilled version of SDXL 1.0, trained for real-time synthesis. It uses Adversarial Diffusion Distillation (ADD) for sampling large-scale foundational image diffusion models in 1 to 4 steps with high image quality. This approach combines score distillation with an adversarial loss, leveraging large-scale image diffusion models as a teacher signal to ensure high fidelity in low-step sampling.",
"asset_format": "PyTorch",
"asset_type": "Model",
"asset_blob_type": "iroh-collection",
"source_location_url": "",
"contact_info": "Refer to the official Stability AI channels or the technical report for contact information.",
"license": "sai-nc-community",
"license_link": "https://huggingface.co/stabilityai/sdxl-turbo/blob/main/LICENSE.TXT",
"registered_date": "2024-01-29T16:00:32.147672Z",
"last_modified_date": "2024-01-29T16:00:32.147672Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4ihjtsf3mnk5knzcv5rsql5flz2qm4x2kj7tqw2t3ukgtwyy7kixny",
"properties": {
"nodeType": "data",
"timestamp": "2024-01-29T16:00:23Z",
"dataRegistrationJcs": "urn:cid:baga6yaq6eacodu4hepmrm2sogq3kirqr47xi6prup32tytlhkabvsxffqls3s",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 98,
"asset_name": "style-transfer-pytorch",
"owning_project": "",
"asset_description": "An implementation of neural style transfer in PyTorch, supporting CPUs and Nvidia GPUs. It offers automatic multi-scale stylization for high-quality high-resolution outputs, compatible even up to print resolution. The code supports dual GPU usage for higher maximum resolution. Modifications from the original algorithm include the use of PyTorch pre-trained VGG-19 weights, 'replicate' padding mode in the first layer of VGG-19, scaled results for average/L2 pooling, Wasserstein-2 style loss, an exponential moving average over iterates, warm-starting of the Adam optimizer, non-equal weights for style layers, and progressive scaling of image stylization.",
"asset_format": "PyTorch",
"asset_type": "Code",
"asset_blob_type": "iroh-collection",
"source_location_url": "",
"contact_info": "https://twitter.com/RiversHaveWings",
"license": "MIT",
"license_link": "https://github.com/crowsonkb/style-transfer-pytorch/blob/master/LICENSE",
"registered_date": "2024-01-29T16:00:31.86777Z",
"last_modified_date": "2024-01-29T16:00:31.86777Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4ibolvbapfc6uckeqb3nlxw3zbecufb7m2i65mgfkbp35elxmqhsdy",
"properties": {
"nodeType": "data",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"timestamp": "2024-01-29T16:00:23Z",
"dataRegistrationJcs": "urn:cid:baga6yaq6easfw34bfqzruffkg3cfcv5zelaeoq7eqlnguaefgyqn7b5y2xs6a"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 99,
"asset_name": "unofficial-SDXL-Turbo-i2i-t2i",
"owning_project": "NoPattern Project",
"asset_description": "An application for image-to-image (i2i) and text-to-image (t2i) generation using the SDXL-Turbo model. It was developed for the 'No Pattern' project, showcasing the model's capability in image synthesis based on textual and visual inputs.",
"asset_format": "Python",
"asset_type": "Code",
"asset_blob_type": "iroh-collection",
"source_location_url": "",
"contact_info": "https://twitter.com/radamar",
"license": "refer to developer",
"license_link": "https://twitter.com/radamar",
"registered_date": "2024-01-29T16:00:31.92389Z",
"last_modified_date": "2024-01-29T16:00:31.92389Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4ieew2ui4vcemfibfbv4csgykzf7bz3pk3gmx3zdahupph7tv26jfm",
"properties": {
"nodeType": "data",
"dataRegistrationJcs": "urn:cid:baga6yaq6eck5l2xjlngsomwfos67jz2ohieh344zqru3xvunibf2trxiuqyea",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"timestamp": "2024-01-29T16:00:24Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 103,
"asset_name": "VGG-19",
"owning_project": "ImageNet Challenge 2014",
"asset_description": "VGG-19 is a convolutional neural network that is 19 layers deep. It was developed by Karen Simonyan and Andrew Zisserman. The model is notable for its depth and the use of very small (3x3) convolution filters. VGG-19 achieved significant improvements in accuracy in large-scale image recognition by increasing network depth. It was part of the ImageNet Challenge 2014 submission, where it performed exceptionally well in the localisation and classification tracks. The pretrained network is capable of classifying images into 1000 categories and is widely used for various computer vision tasks.",
"asset_format": "PyTorch",
"asset_type": "Model",
"asset_blob_type": "",
"source_location_url": "",
"contact_info": "Refer to the original paper or the PyTorch official channels for contact information.",
"license": "Refer to the PyTorch repository for licensing information.",
"license_link": "",
"registered_date": "2024-01-29T16:00:32.203438Z",
"last_modified_date": "2024-01-29T16:00:32.203438Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4ifpcne3t5pzugtkaqcn5i3nzskjtpfslsnnyejlpte2spfoihzsmi",
"properties": {
"dataRegistrationJcs": "urn:cid:baga6yaq6edgteubsc6ptupw5ftqbau5sphzghkrxxqvbsdw3plczkd7s3eurq",
"nodeType": "data",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"timestamp": "2024-01-29T16:00:24Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 108,
"asset_name": "NoPattern Roarshac",
"owning_project": "NoPattern Rorschach",
"asset_description": "The NoPattern Roarshac Model is a generative AI model that allows users to transform images from NoPattern's 'CRASH REPORT' into unique generative creations. This model leverages the artistic content of the 'CRASH REPORT', a 72-page book of experimental 3D imagery, to enable users to find and create their own patterns within NoPattern's art. It embodies the concept of working creatively with imperfect technology and embracing errors and interruptions, as explored in the original 'CRASH REPORT'.",
"asset_format": "Generative AI",
"asset_type": "Model",
"asset_blob_type": "",
"source_location_url": "",
"contact_info": "https://nopattern.com/Info",
"license": "Copyright NoPattern Studio Chicago 2024. All rights reserved.",
"license_link": "https://nopattern.com/",
"registered_date": "2024-01-29T16:00:32.506622Z",
"last_modified_date": "2024-01-29T16:00:32.506622Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4ien22v3j5s6h22rffqenihyzenyh23bln4ir46mbrk3lqjusgbevi",
"properties": {
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"nodeType": "data",
"dataRegistrationJcs": "urn:cid:baga6yaq6edtsf5pjack4uz3mwmkr3spgljq2chisbqkf7libfwulrfohxqgby",
"timestamp": "2024-01-29T15:59:03Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 107,
"asset_name": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
"owning_project": "LAION-2B",
"asset_description": "A CLIP ViT-H/14 model trained using the LAION-2B English subset of LAION-5B, utilizing OpenCLIP. The model, developed by Romain Beaumont on the stability.ai cluster, is designed for zero-shot, arbitrary image classification and aims to aid research in understanding the potential impact of such models.",
"asset_format": "OpenCLIP",
"asset_type": "Model",
"asset_blob_type": "iroh-collection",
"source_location_url": "",
"contact_info": "Refer to Hugging Face's official channels for contact information.",
"license": "MIT",
"license_link": "https://doi.org/10.5281/zenodo.5143773",
"registered_date": "2024-01-29T16:00:32.444151Z",
"last_modified_date": "2024-01-29T16:00:32.444151Z"
}
}
},
{
"node": {
"id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"properties": {
"vcRegistrationsJcs": ["urn:cid:baga6yaq6eauf5h3zyu7k5bc5toy47ou5uoxvlwlzcsewywdnohmsoig6opiou"],
"operatedBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"nodeType": "computation",
"timestamp": "2024-01-29T15:59:12Z",
"jcsCID": "urn:cid:baga6yaq6edlbrkeexnnhmuvijdai2ydhmc7it7jlkvsrluhzqhti3gdyjbtig",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
}
},
"enrichments": {}
},
{
"node": {
"id": "urn:cid:bafkr4ifay6uimdc6iv7a5kblryg2zf6nf6nywyuvuut52227xvlcnzzleu",
"properties": {
"dataRegistrationJcs": "urn:cid:baga6yaq6ebn6ucx7ix24yuqoksaurftohczlldwfpqw22rznwufksfr7ovg7i",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"nodeType": "data",
"timestamp": "2024-01-29T15:59:12Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 104,
"asset_name": "BLIP: Bootstrapping Language-Image Pre-training",
"owning_project": "Salesforce Research",
"asset_description": "BLIP is a versatile model capable of performing tasks such as Visual Question Answering, Image-Text Retrieval, and Image Captioning. Developed by Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi, it utilizes Vision-Language Pre-training (VLP) to excel in both understanding-based and generation-based tasks. The model's efficacy is showcased through state-of-the-art results in various vision-language tasks.",
"asset_format": "PyTorch",
"asset_type": "Model",
"asset_blob_type": "iroh-collection",
"source_location_url": "",
"contact_info": "Refer to the original paper or Salesforce's official channels for contact information.",
"license": "bsd-3-clause",
"license_link": "https://opensource.org/license/bsd-3-clause/",
"registered_date": "2024-01-29T16:00:32.259189Z",
"last_modified_date": "2024-01-29T16:00:32.259189Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4iapgxcitooymy4r4ol2ndbnca5l2pvp74ioatyrmkeg2ath4wcozq",
"properties": {
"dataRegistrationJcs": "urn:cid:baga6yaq6ebt3lag6yclf3kvthia254sfq6ynfh4vdjpxtbqfayfxynthvo5x6",
"nodeType": "data",
"timestamp": "2024-01-29T15:59:12Z",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 101,
"asset_name": "CLIP Interrogator",
"owning_project": "CLIP Interrogator",
"asset_description": "The CLIP Interrogator is a prompt engineering tool that leverages OpenAI's CLIP and Salesforce's BLIP models. It optimizes text prompts to match images, aiding in the use of text-to-image models like Stable Diffusion for artistic creation. Developed by pharmapsychotic, it's a novel tool for artists and creators.",
"asset_format": "Jupyter Notebook",
"asset_type": "Code",
"asset_blob_type": "",
"source_location_url": "",
"contact_info": "https://pharmapsychotic.com, Twitter: @pharmapsychotic",
"license": "MIT",
"license_link": "https://opensource.org/licenses/MIT",
"registered_date": "2024-01-29T16:00:32.089085Z",
"last_modified_date": "2024-01-29T16:00:32.089085Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4ieudbqko5jn3kkwhtkcje4nflw2bzitm26lurm2bphgddtulqvivu",
"properties": {
"nodeType": "data",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"dataRegistrationJcs": "urn:cid:baga6yaq6ecbq3r37leu53ooxxiq2yq7qkxuhxten6vim4232h57kzrz5vugk2",
"timestamp": "2024-01-29T15:59:12Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 109,
"asset_name": "AI-Captioned Dataset",
"owning_project": "No Pattern - CRASH REPORT",
"asset_description": "This dataset, named 'desc.csv', consists of AI-generated captions for images from the 'No Pattern - CRASH REPORT'. The captions were generated using the CLIP Interrogator, a tool that employs OpenAI's CLIP and Salesforce's BLIP models to optimize text prompts for images. The dataset offers unique insights into AI's interpretation of visual content.",
"asset_format": "CSV",
"asset_type": "Dataset",
"asset_blob_type": "",
"source_location_url": "",
"contact_info": "",
"license": "Dependent on the licensing of the source images and the CLIP Interrogator tool",
"license_link": "Non-commercial",
"registered_date": "2024-01-29T16:00:32.562955Z",
"last_modified_date": "2024-01-29T16:00:32.562955Z"
}
}
},
{
"node": {
"id": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
"properties": {
"jcsCID": "urn:cid:baga6yaq6eaywa6buvdncfajqgh5pqvwe6mni5ajko5qyy72imfkik6jmzyj4e",
"timestamp": "2024-01-29T15:59:12Z",
"operatedBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"vcRegistrationsJcs": ["urn:cid:baga6yaq6ea4pydrkxuufdpaswb2xnbg6medybree2pgr6od734s73mmmgvpj2"],
"nodeType": "computation"
}
},
"enrichments": {}
},
{
"node": {
"id": "urn:cid:bafkr4iauvrrmfbm4oiiqex4e7qazphp4sxe67brr7dld2rhwqkfutkd6va",
"properties": {
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"dataRegistrationJcs": "urn:cid:baga6yaq6eb5z53fkpc3mcrwfn6rnhpky7cfupzavbykfbon5djjwtopyz6b2c",
"nodeType": "data",
"timestamp": "2024-01-29T15:59:12Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 97,
"asset_name": "convert to json py",
"owning_project": "Rorschach",
"asset_description": "A Python script named 'convert_to_json.py' that converts the 'desc.csv' file to json lines, containing AI-generated captions for images, into a JSON format. This script facilitates the easy integration and processing of the captioned data in various applications that require JSON format.",
"asset_format": "Python",
"asset_type": "Code",
"asset_blob_type": "",
"source_location_url": "",
"contact_info": "backnotprop",
"license": "no license",
"license_link": "no license link",
"registered_date": "2024-01-29T16:00:31.797419Z",
"last_modified_date": "2024-01-29T16:00:31.797419Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4iefsxz5zzn2fx2zpklogxgj3hndx2mbmirxcztz5lyg342jtstk2u",
"properties": {
"nodeType": "data",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"dataRegistrationJcs": "urn:cid:baga6yaq6ecepwli7roalih3iswoppengibpa2qmkj4eg4twqlx7uofat5bods",
"timestamp": "2024-01-29T15:58:37Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 100,
"asset_name": "NoPattern - CRASH REPORT",
"owning_project": "NoPattern Rorschach",
"asset_description": "CRASH REPORT was a self-published, 72-page book by NoPattern Studio released in November, 2019. Limited to an edition of 300, the book contained a year's worth of experimental, exploratory 3D imagery generated entirely in Photoshop. The concept behind the book deals with our relationship to working creatively with imperfect technology and learning to embrace errors and interruptions.",
"asset_format": "Images",
"asset_type": "Dataset",
"asset_blob_type": "iroh-collection",
"source_location_url": "",
"contact_info": "https://nopattern.com/Info",
"license": "Copyright NoPattern Studio Chicago 2024. All rights reserved.",
"license_link": "https://nopattern.com/",
"registered_date": "2024-01-29T16:00:31.997347Z",
"last_modified_date": "2024-01-29T16:00:31.997348Z"
}
}
},
{
"node": {
"id": "urn:cid:bafkr4ieqv4gkv6vvpb3twx2qdrg3p76evukyhgbtc6zyqo4cmktx6fj56q",
"properties": {
"dataRegistrationJcs": "urn:cid:baga6yaq6eajymqff5koge2wpehyoh45i6kzkl4ix6yrpz4yloxvhpd6omc3rm",
"registeredBy": "did:key:z6MkhQD1A9eMQ8bZNGmBiCVz7kG4mfnApD7WjHKNhkZp7HEY",
"nodeType": "data",
"timestamp": "2024-01-29T15:58:37Z"
}
},
"enrichments": {
"asset_hub": {
"asset_id": 96,
"asset_name": "normalize.py",
"owning_project": "NoPattern Rorschach",
"asset_description": "Converts NoPattern Images to 1024x1024 white background images",
"asset_format": "python",
"asset_type": "Code",
"asset_blob_type": "",
"source_location_url": "",
"contact_info": "https://nopattern.com/Info",
"license": "Copyright NoPattern Studio Chicago 2024. All rights reserved.",
"license_link": "https://nopattern.com/",
"registered_date": "2024-01-29T16:00:31.737289Z",
"last_modified_date": "2024-01-29T16:00:31.73729Z"
}
}
}
],
"edges": [
{
"edge": {
"id": "3134cd82-9bd5-4e11-9fb1-69fd0ca6abe9",
"source_id": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
"target_id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m",
"statement": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
"label": "output"
},
"enrichments": {}
},
{
"edge": {
"id": "ccc32512-f1e6-43ee-b5ed-b6ab36375d73",
"source_id": "urn:cid:bafkr4ifxrye76qsvscdwy4odbqxszodph7xkhmtk3bvfb2aywwfkrchf4i",
"target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "0f52e75a-18e9-4fdc-9ae2-7d087ecf5e64",
"source_id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m",
"target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "e3c5fa25-1f7b-474c-a540-155edb7d1a43",
"source_id": "urn:cid:bafkr4ihh57vo2fq2imhen3ak6i6pksohtlqwhoctcvjrqhbypzunmbv6j4",
"target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "bd5f9f0e-6739-4cb0-8805-57cb1e17a9c4",
"source_id": "urn:cid:bafkr4ihjtsf3mnk5knzcv5rsql5flz2qm4x2kj7tqw2t3ukgtwyy7kixny",
"target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "7ab3061e-06bc-433e-8454-964bef6bba58",
"source_id": "urn:cid:bafkr4ibolvbapfc6uckeqb3nlxw3zbecufb7m2i65mgfkbp35elxmqhsdy",
"target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "a5726459-30f9-4dcc-a4b0-19f71ea1e1c3",
"source_id": "urn:cid:bafkr4ieew2ui4vcemfibfbv4csgykzf7bz3pk3gmx3zdahupph7tv26jfm",
"target_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "426e4811-b281-4af5-9cf1-179886e03110",
"source_id": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"target_id": "urn:cid:bafkr4ifpcne3t5pzugtkaqcn5i3nzskjtpfslsnnyejlpte2spfoihzsmi",
"statement": "urn:cid:bagb6qaq6ecap337kroqsu5twfdwoqjhwe73pb7qra6d5t22h5tsj2sxtdlzka",
"label": "output"
},
"enrichments": {}
},
{
"edge": {
"id": "ca6c7b16-d442-4976-954c-bd78a72ca400",
"source_id": "urn:cid:bafkr4ien22v3j5s6h22rffqenihyzenyh23bln4ir46mbrk3lqjusgbevi",
"target_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "48ce193a-95de-46e9-b971-2d8468e7bb7a",
"source_id": "urn:cid:bafkr4ifay6uimdc6iv7a5kblryg2zf6nf6nywyuvuut52227xvlcnzzleu",
"target_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "8da6d8de-ef03-4323-b68e-831ac3f96460",
"source_id": "urn:cid:bafkr4iapgxcitooymy4r4ol2ndbnca5l2pvp74ioatyrmkeg2ath4wcozq",
"target_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "d2fd94bf-3738-4c0e-89d0-6e5080c67c91",
"source_id": "urn:cid:bafkr4iafqm6lpxq3dvy4slq7lmfy5zxvsoso2gm3nvbqbgam6xyc4lmr4m",
"target_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "56c675f4-c337-43f9-bc56-faf926f740ba",
"source_id": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"target_id": "urn:cid:bafkr4ieudbqko5jn3kkwhtkcje4nflw2bzitm26lurm2bphgddtulqvivu",
"statement": "urn:cid:bagb6qaq6ede2ppixa73ox3etfkjr4o23kv6yczab4xmuxwe4hr75vokuz76nq",
"label": "output"
},
"enrichments": {}
},
{
"edge": {
"id": "32aea65b-5a16-4b76-a974-809a09859077",
"source_id": "urn:cid:bafkr4ieudbqko5jn3kkwhtkcje4nflw2bzitm26lurm2bphgddtulqvivu",
"target_id": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
"statement": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "29c59065-bb6e-4d50-ab09-78cff27d4c07",
"source_id": "urn:cid:bafkr4iauvrrmfbm4oiiqex4e7qazphp4sxe67brr7dld2rhwqkfutkd6va",
"target_id": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
"statement": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "a633e1d9-9b94-4c7e-91b2-a78e5a610bb7",
"source_id": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
"target_id": "urn:cid:bafkr4ifxrye76qsvscdwy4odbqxszodph7xkhmtk3bvfb2aywwfkrchf4i",
"statement": "urn:cid:bagb6qaq6echai7ljrudfr7jdf7p5xwdxkb4xofhwjjjstcc7f6dzybz5hy3d4",
"label": "output"
},
"enrichments": {}
},
{
"edge": {
"id": "024d9b65-fcd0-42fe-b94c-ab84ddd067d1",
"source_id": "urn:cid:bafkr4iefsxz5zzn2fx2zpklogxgj3hndx2mbmirxcztz5lyg342jtstk2u",
"target_id": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
"statement": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
"label": "input"
},
"enrichments": {}
},
{
"edge": {
"id": "769578a3-d99c-43ce-812f-8aed6a4cd9e7",
"source_id": "urn:cid:bafkr4ieqv4gkv6vvpb3twx2qdrg3p76evukyhgbtc6zyqo4cmktx6fj56q",
"target_id": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
"statement": "urn:cid:bagb6qaq6edb3w3oq2ldhgtupd4n7ye2lg3jzr33rimpccuclcawxdevub5bqi",
"label": "input"
},
"enrichments": {}
}
]
},
"users": [
{
"id": 1,
"username": "admin",
"firstName": "",
"lastName": "",
"did": "",
"status": "TRUSTED",
"notes": null
}
]
}
|