Add new SentenceTransformer model
Browse files- 1_Dense/config.json +1 -0
- 1_Dense/model.safetensors +3 -0
- README.md +238 -0
- config.json +26 -0
- config_sentence_transformers.json +49 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +71 -0
- vocab.txt +0 -0
1_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 128, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
1_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb3d683617f336df4ee6033b8afa40648ee2f9030408704db63a8fe531489400
|
3 |
+
size 393304
|
README.md
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- ColBERT
|
4 |
+
- PyLate
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
base_model: colbert-ir/colbertv2.0
|
9 |
+
pipeline_tag: sentence-similarity
|
10 |
+
library_name: PyLate
|
11 |
+
---
|
12 |
+
|
13 |
+
# PyLate model based on colbert-ir/colbertv2.0
|
14 |
+
|
15 |
+
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [colbert-ir/colbertv2.0](https://huggingface.co/colbert-ir/colbertv2.0). It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
- **Model Type:** PyLate model
|
21 |
+
- **Base model:** [colbert-ir/colbertv2.0](https://huggingface.co/colbert-ir/colbertv2.0) <!-- at revision c1e84128e85ef755c096a95bdb06b47793b13acf -->
|
22 |
+
- **Document Length:** 300 tokens
|
23 |
+
- **Query Length:** 32 tokens
|
24 |
+
- **Output Dimensionality:** 128 tokens
|
25 |
+
- **Similarity Function:** MaxSim
|
26 |
+
<!-- - **Training Dataset:** Unknown -->
|
27 |
+
<!-- - **Language:** Unknown -->
|
28 |
+
<!-- - **License:** Unknown -->
|
29 |
+
|
30 |
+
### Model Sources
|
31 |
+
|
32 |
+
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
|
33 |
+
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
|
34 |
+
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
|
35 |
+
|
36 |
+
### Full Model Architecture
|
37 |
+
|
38 |
+
```
|
39 |
+
ColBERT(
|
40 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
41 |
+
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
42 |
+
)
|
43 |
+
```
|
44 |
+
|
45 |
+
## Usage
|
46 |
+
First install the PyLate library:
|
47 |
+
|
48 |
+
```bash
|
49 |
+
pip install -U pylate
|
50 |
+
```
|
51 |
+
|
52 |
+
### Retrieval
|
53 |
+
|
54 |
+
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
|
55 |
+
|
56 |
+
#### Indexing documents
|
57 |
+
|
58 |
+
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
|
59 |
+
|
60 |
+
```python
|
61 |
+
from pylate import indexes, models, retrieve
|
62 |
+
|
63 |
+
# Step 1: Load the ColBERT model
|
64 |
+
model = models.ColBERT(
|
65 |
+
model_name_or_path=NohTow/colbertv2.0,
|
66 |
+
)
|
67 |
+
|
68 |
+
# Step 2: Initialize the Voyager index
|
69 |
+
index = indexes.Voyager(
|
70 |
+
index_folder="pylate-index",
|
71 |
+
index_name="index",
|
72 |
+
override=True, # This overwrites the existing index if any
|
73 |
+
)
|
74 |
+
|
75 |
+
# Step 3: Encode the documents
|
76 |
+
documents_ids = ["1", "2", "3"]
|
77 |
+
documents = ["document 1 text", "document 2 text", "document 3 text"]
|
78 |
+
|
79 |
+
documents_embeddings = model.encode(
|
80 |
+
documents,
|
81 |
+
batch_size=32,
|
82 |
+
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
|
83 |
+
show_progress_bar=True,
|
84 |
+
)
|
85 |
+
|
86 |
+
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
|
87 |
+
index.add_documents(
|
88 |
+
documents_ids=documents_ids,
|
89 |
+
documents_embeddings=documents_embeddings,
|
90 |
+
)
|
91 |
+
```
|
92 |
+
|
93 |
+
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
|
94 |
+
|
95 |
+
```python
|
96 |
+
# To load an index, simply instantiate it with the correct folder/name and without overriding it
|
97 |
+
index = indexes.Voyager(
|
98 |
+
index_folder="pylate-index",
|
99 |
+
index_name="index",
|
100 |
+
)
|
101 |
+
```
|
102 |
+
|
103 |
+
#### Retrieving top-k documents for queries
|
104 |
+
|
105 |
+
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
|
106 |
+
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
|
107 |
+
|
108 |
+
```python
|
109 |
+
# Step 1: Initialize the ColBERT retriever
|
110 |
+
retriever = retrieve.ColBERT(index=index)
|
111 |
+
|
112 |
+
# Step 2: Encode the queries
|
113 |
+
queries_embeddings = model.encode(
|
114 |
+
["query for document 3", "query for document 1"],
|
115 |
+
batch_size=32,
|
116 |
+
is_query=True, # # Ensure that it is set to False to indicate that these are queries
|
117 |
+
show_progress_bar=True,
|
118 |
+
)
|
119 |
+
|
120 |
+
# Step 3: Retrieve top-k documents
|
121 |
+
scores = retriever.retrieve(
|
122 |
+
queries_embeddings=queries_embeddings,
|
123 |
+
k=10, # Retrieve the top 10 matches for each query
|
124 |
+
)
|
125 |
+
```
|
126 |
+
|
127 |
+
### Reranking
|
128 |
+
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
|
129 |
+
|
130 |
+
```python
|
131 |
+
from pylate import rank, models
|
132 |
+
|
133 |
+
queries = [
|
134 |
+
"query A",
|
135 |
+
"query B",
|
136 |
+
]
|
137 |
+
|
138 |
+
documents = [
|
139 |
+
["document A", "document B"],
|
140 |
+
["document 1", "document C", "document B"],
|
141 |
+
]
|
142 |
+
|
143 |
+
documents_ids = [
|
144 |
+
[1, 2],
|
145 |
+
[1, 3, 2],
|
146 |
+
]
|
147 |
+
|
148 |
+
model = models.ColBERT(
|
149 |
+
model_name_or_path=NohTow/colbertv2.0,
|
150 |
+
)
|
151 |
+
|
152 |
+
queries_embeddings = model.encode(
|
153 |
+
queries,
|
154 |
+
is_query=True,
|
155 |
+
)
|
156 |
+
|
157 |
+
documents_embeddings = model.encode(
|
158 |
+
documents,
|
159 |
+
is_query=False,
|
160 |
+
)
|
161 |
+
|
162 |
+
reranked_documents = rank.rerank(
|
163 |
+
documents_ids=documents_ids,
|
164 |
+
queries_embeddings=queries_embeddings,
|
165 |
+
documents_embeddings=documents_embeddings,
|
166 |
+
)
|
167 |
+
```
|
168 |
+
|
169 |
+
<!--
|
170 |
+
### Direct Usage (Transformers)
|
171 |
+
|
172 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
173 |
+
|
174 |
+
</details>
|
175 |
+
-->
|
176 |
+
|
177 |
+
<!--
|
178 |
+
### Downstream Usage (Sentence Transformers)
|
179 |
+
|
180 |
+
You can finetune this model on your own dataset.
|
181 |
+
|
182 |
+
<details><summary>Click to expand</summary>
|
183 |
+
|
184 |
+
</details>
|
185 |
+
-->
|
186 |
+
|
187 |
+
<!--
|
188 |
+
### Out-of-Scope Use
|
189 |
+
|
190 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
191 |
+
-->
|
192 |
+
|
193 |
+
<!--
|
194 |
+
## Bias, Risks and Limitations
|
195 |
+
|
196 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
197 |
+
-->
|
198 |
+
|
199 |
+
<!--
|
200 |
+
### Recommendations
|
201 |
+
|
202 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
203 |
+
-->
|
204 |
+
|
205 |
+
## Training Details
|
206 |
+
|
207 |
+
### Framework Versions
|
208 |
+
- Python: 3.11.10
|
209 |
+
- Sentence Transformers: 3.3.1
|
210 |
+
- PyLate: 1.1.2
|
211 |
+
- Transformers: 4.46.2
|
212 |
+
- PyTorch: 2.5.1+cu124
|
213 |
+
- Accelerate: 1.1.1
|
214 |
+
- Datasets: 3.1.0
|
215 |
+
- Tokenizers: 0.20.3
|
216 |
+
|
217 |
+
|
218 |
+
## Citation
|
219 |
+
|
220 |
+
### BibTeX
|
221 |
+
|
222 |
+
<!--
|
223 |
+
## Glossary
|
224 |
+
|
225 |
+
*Clearly define terms in order to be accessible across audiences.*
|
226 |
+
-->
|
227 |
+
|
228 |
+
<!--
|
229 |
+
## Model Card Authors
|
230 |
+
|
231 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
232 |
+
-->
|
233 |
+
|
234 |
+
<!--
|
235 |
+
## Model Card Contact
|
236 |
+
|
237 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
238 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "colbert-ir/colbertv2.0",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.46.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.46.2",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine",
|
10 |
+
"query_prefix": "[unused0]",
|
11 |
+
"document_prefix": "[unused1]",
|
12 |
+
"query_length": 32,
|
13 |
+
"document_length": 300,
|
14 |
+
"attend_to_expansion_tokens": false,
|
15 |
+
"skiplist_words": [
|
16 |
+
"!",
|
17 |
+
"\"",
|
18 |
+
"#",
|
19 |
+
"$",
|
20 |
+
"%",
|
21 |
+
"&",
|
22 |
+
"'",
|
23 |
+
"(",
|
24 |
+
")",
|
25 |
+
"*",
|
26 |
+
"+",
|
27 |
+
",",
|
28 |
+
"-",
|
29 |
+
".",
|
30 |
+
"/",
|
31 |
+
":",
|
32 |
+
";",
|
33 |
+
"<",
|
34 |
+
"=",
|
35 |
+
">",
|
36 |
+
"?",
|
37 |
+
"@",
|
38 |
+
"[",
|
39 |
+
"\\",
|
40 |
+
"]",
|
41 |
+
"^",
|
42 |
+
"_",
|
43 |
+
"`",
|
44 |
+
"{",
|
45 |
+
"|",
|
46 |
+
"}",
|
47 |
+
"~"
|
48 |
+
]
|
49 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc984a3dfbe2a0d8939e0ee4db45aa071da2d9e9ef9817a86e52f5f55a274305
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Dense",
|
12 |
+
"type": "pylate.models.Dense.Dense"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "[MASK]",
|
17 |
+
"sep_token": {
|
18 |
+
"content": "[SEP]",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"unk_token": {
|
25 |
+
"content": "[UNK]",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[unused0]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": false
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[unused1]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"100": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"101": {
|
36 |
+
"content": "[CLS]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"102": {
|
44 |
+
"content": "[SEP]",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"103": {
|
52 |
+
"content": "[MASK]",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"clean_up_tokenization_spaces": false,
|
61 |
+
"cls_token": "[CLS]",
|
62 |
+
"do_lower_case": true,
|
63 |
+
"mask_token": "[MASK]",
|
64 |
+
"model_max_length": 512,
|
65 |
+
"pad_token": "[MASK]",
|
66 |
+
"sep_token": "[SEP]",
|
67 |
+
"strip_accents": null,
|
68 |
+
"tokenize_chinese_chars": true,
|
69 |
+
"tokenizer_class": "BertTokenizer",
|
70 |
+
"unk_token": "[UNK]"
|
71 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|