File size: 4,057 Bytes
53ae841 c40ea05 848bacc 13362b2 848bacc 13362b2 ffe0fdc 24bc55e f5be71e 0a8b024 f5be71e 6f9fb40 f5be71e 0a8b024 f7a9535 cda68e1 f7a9535 cda68e1 f7a9535 cda68e1 f7a9535 cda68e1 f7a9535 ffe0fdc c926831 13362b2 c926831 13362b2 44596be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
license: apache-2.0
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63cf23cffbd0cc580bc65c73/QDvxvuS3M7oHv7JI5d1ke.png)
Custom Model "Dolphin2Star1" Merged by Noodlz.
12.5B linear merged from the uncensored mistral 7B v0.2 as the base, with the fine tunes of StarlingLM 7B Beta that's originally mistral 7B v0.1
have fun =)
[EDIT] - preset wise it seems like it likes the "ChatML" format.
[EDIT 2] - Usage Notes - model is sorta picky with the batch size and prompt preset/template. (maybe because merge of ChatML and OpenChat models)
My current recommended setting & findings
- Using LM Studio - use the default preset. GPU acceleration to max. prompt eval size to 1024, context length to 32768. this yields me decent, coherant results. ChatML works too but occasionall spits up odd texts after a couple of turns.
- Using Oobabooga (Windows PC) - runs well using run-in-4bit along with use_flash_attention_2. default presets and everything works just fine.
- Using OobaBooga (Mac) - [investigating]
## Instructions Template:
```
{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ '<s>' }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '
' + message['content'] + '<|im_end|>' + '
'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
' }}{% endif %}
```
## Chat Template:
```
{%- for message in messages %}
{%- if message['role'] == 'system' -%}
{%- if message['content'] -%}
{{- message['content'] + '\n\n' -}}
{%- endif -%}
{%- if user_bio -%}
{{- user_bio + '\n\n' -}}
{%- endif -%}
{%- else -%}
{%- if message['role'] == 'user' -%}
{{- name1 + ': ' + message['content'] + '\n'-}}
{%- else -%}
{{- name2 + ': ' + message['content'] + '\n' -}}
{%- endif -%}
{%- endif -%}
{%- endfor -%}
```
---
license: apache-2.0
---
---
base_model:
- cognitivecomputations/dolphin-2.8-mistral-7b-v02
- NexusFlow/Starling-LM-7B-beta
library_name: transformers
tags:
- mergekit
- merge
---
# output_folder
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method.
### Models Merged
The following models were included in the merge:
* [cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)
* [NexusFlow/Starling-LM-7B-beta](https://huggingface.co/NexusFlow/Starling-LM-7B-beta)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: linear
parameters:
weight: 1.0
slices:
- sources:
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02
layer_range: [0,1]
- model: NexusFlow/Starling-LM-7B-beta
layer_range: [0,1]
parameters:
weight: 0
- sources:
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02
layer_range: [1,8]
- sources:
- model: NexusFlow/Starling-LM-7B-beta
layer_range: [4,12]
- sources:
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02
layer_range: [8,16]
- sources:
- model: NexusFlow/Starling-LM-7B-beta
layer_range: [12,20]
- sources:
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02
layer_range: [16,24]
- sources:
- model: NexusFlow/Starling-LM-7B-beta
layer_range: [20,28]
- sources:
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02
layer_range: [24,31]
- sources:
- model: cognitivecomputations/dolphin-2.8-mistral-7b-v02
layer_range: [31,32]
- model: NexusFlow/Starling-LM-7B-beta
layer_range: [31,32]
parameters:
weight: 0
dtype: float16
tokenizer_source: model:cognitivecomputations/dolphin-2.8-mistral-7b-v02
``` |