Doron Adler
commited on
Commit
•
eb79bc2
1
Parent(s):
5b35cbf
Created model card
Browse files
README.md
CHANGED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: he
|
3 |
+
|
4 |
+
thumbnail: https://avatars1.githubusercontent.com/u/3617152?norod.jpg
|
5 |
+
widget:
|
6 |
+
- text: "עוד בימי קדם"
|
7 |
+
- text: "קוראים לי דורון ואני מעוניין ל"
|
8 |
+
- text: "קוראים לי איציק ואני חושב ש"
|
9 |
+
- text: "החתול שלך מאוד חמוד ו"
|
10 |
+
|
11 |
+
license: mit
|
12 |
+
---
|
13 |
+
|
14 |
+
# hebrew-distilgpt2
|
15 |
+
|
16 |
+
A tiny GPT2 based Hebrew text generation model trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud](https://sites.research.google/trc/) Program.
|
17 |
+
|
18 |
+
## Dataset
|
19 |
+
|
20 |
+
oscar / unshuffled_deduplicated_he - [Homepage](https://oscar-corpus.com) | [Dataset Permalink](https://huggingface.co/datasets/viewer/?dataset=oscar&config=unshuffled_deduplicated_he)
|
21 |
+
|
22 |
+
The Open Super-large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture.
|
23 |
+
|
24 |
+
## Training
|
25 |
+
|
26 |
+
* Done on a TPUv3-8 VM using [Huggingface's clm-flax example script](https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_clm_flax.py) <BR>
|
27 |
+
* I have made a list of items which might make it easier for other to use this script. The list was posted to [This discussion forum](https://discuss.huggingface.co/t/ideas-for-beginner-friendlier-tpu-vm-clm-training/8351)
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
|
32 |
+
#### Simple usage sample code
|
33 |
+
|
34 |
+
```python
|
35 |
+
|
36 |
+
#pip install tokenizers==0.10.3 transformers==4.8.0
|
37 |
+
|
38 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-distilgpt2")
|
41 |
+
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-distilgpt2", pad_token_id=tokenizer.eos_token_id)
|
42 |
+
|
43 |
+
prompt_text = "אני אוהב שוקולד ועוגות"
|
44 |
+
max_len = 512
|
45 |
+
sample_output_num = 3
|
46 |
+
seed = 1000
|
47 |
+
|
48 |
+
import numpy as np
|
49 |
+
import torch
|
50 |
+
|
51 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
+
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
|
53 |
+
|
54 |
+
print(f"device: {device}, n_gpu: {n_gpu}")
|
55 |
+
|
56 |
+
np.random.seed(seed)
|
57 |
+
torch.manual_seed(seed)
|
58 |
+
if n_gpu > 0:
|
59 |
+
torch.cuda.manual_seed_all(seed)
|
60 |
+
|
61 |
+
model.to(device)
|
62 |
+
|
63 |
+
encoded_prompt = tokenizer.encode(
|
64 |
+
prompt_text, add_special_tokens=False, return_tensors="pt")
|
65 |
+
|
66 |
+
encoded_prompt = encoded_prompt.to(device)
|
67 |
+
|
68 |
+
if encoded_prompt.size()[-1] == 0:
|
69 |
+
input_ids = None
|
70 |
+
else:
|
71 |
+
input_ids = encoded_prompt
|
72 |
+
|
73 |
+
print("input_ids = " + str(input_ids))
|
74 |
+
|
75 |
+
if input_ids != None:
|
76 |
+
max_len += len(encoded_prompt[0])
|
77 |
+
if max_len > 1024:
|
78 |
+
max_len = 1024
|
79 |
+
|
80 |
+
print("Updated max_len = " + str(max_len))
|
81 |
+
|
82 |
+
stop_token = "<|endoftext|>"
|
83 |
+
new_lines = "\n\n\n"
|
84 |
+
|
85 |
+
sample_outputs = model.generate(
|
86 |
+
input_ids,
|
87 |
+
do_sample=True,
|
88 |
+
max_length=max_len,
|
89 |
+
top_k=50,
|
90 |
+
top_p=0.95,
|
91 |
+
num_return_sequences=sample_output_num
|
92 |
+
)
|
93 |
+
|
94 |
+
print(100 * '-' + "\n\t\tOutput\n" + 100 * '-')
|
95 |
+
for i, sample_output in enumerate(sample_outputs):
|
96 |
+
|
97 |
+
text = tokenizer.decode(sample_output, skip_special_tokens=True)
|
98 |
+
|
99 |
+
# Remove all text after the stop token
|
100 |
+
text = text[: text.find(stop_token) if stop_token else None]
|
101 |
+
|
102 |
+
# Remove all text after 3 newlines
|
103 |
+
text = text[: text.find(new_lines) if new_lines else None]
|
104 |
+
|
105 |
+
print("\n{}: {}".format(i, text))
|
106 |
+
print("\n" + 100 * '-')
|
107 |
+
|
108 |
+
```
|