File size: 14,507 Bytes
5646c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86eba0
5646c73
c86eba0
 
 
 
 
 
5646c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86eba0
5646c73
 
 
 
 
 
c86eba0
 
 
 
 
 
 
 
 
 
 
 
5646c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86eba0
 
 
 
 
 
 
 
 
 
 
 
5646c73
 
c86eba0
 
 
 
 
 
 
 
 
 
 
 
5646c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import tensorflow as tf
from tensorflow.keras.layers import Dense,Conv2d,BatchNormalization,LayerNormalization,MultiHeadAttention
from tensorflow.keras.layers import ZeroPadding2D,AveragePooling2D,Identity
from tensorflow.keras import Model
import numpy as np
from typing import Tuple, Union


class Bottleneck(tf.keras.layers.Layer):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1):
        # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
        super(Bottleneck, self).__init__()
        self.conv1 = Conv2d(planes, 1, use_bias=False)
        self.bn1 = BatchNormalization()
        self.relu1 = tf.nn.relu

        self.zeropadding2d = ZeroPadding2D(padding=1)
        self.conv2 = Conv2d(planes, 3, use_bias=False)
        self.bn2 = BatchNormalization()
        self.relu2 = tf.nn.relu

        self.avgpool = AveragePooling2D(stride, stride, 'VALID') if stride > 1 else Identity()

        self.conv3 = Conv2d(planes * self.expansion, 1, use_bias=False)
        self.bn3 = BatchNormalization()
        self.relu3 = tf.nn.relu

        self.downsample = None
        self.stride = stride

        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
            self.downsample = tf.keras.Sequential()
            self.downsample.add(AveragePooling2D(stride, stride, 'VALID'))
            self.downsample.add(Conv2d(planes * self.expansion, 1, strides=1, use_bias=False))
            self.downsample.add(BatchNormalization())

    def __call__(self, x):
        identity = x

        out = self.relu1(self.bn1(self.conv1(x)))
        out = self.zeropadding2d(out)
        out = self.relu2(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu3(out)
        return out


class AttentionPool2d(tf.keras.layers.Layer):
    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        self.positional_embedding = self.add_weight(
            name='positional_embedding',
            shape=[self.spacial_dim ** 2 + 1, self.embed_dim],
            initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=1./self.embed_dim**0.5),
            trainable=True
        )
        self.k_proj = Dense(embed_dim)
        self.q_proj = Dense(embed_dim)
        self.v_proj = Dense(embed_dim)
        self.c_proj = Dense(output_dim or embed_dim)
        self.num_heads = num_heads

    def __call__(self, x):
        shape = x.shape
        batch_size = shape[0]
        height = shape[1]
        width = shape[2]
        channels = shape[3]
        new_shape = (batch_size, height * width, channels)
        x = tf.transpose(tf.reshape(x, new_shape), (1, 0, 2))
        x = tf.concat([tf.reduce_mean(x, axis=0, keepdims=True), x], axis=0)  # (HW+1)NC
        x = x + tf.cast(self.positional_embedding[:, None, :], x.dtype)  # (HW+1)NC
        tgt_len, bsz, embed_dim = x.shape
        query=self.q_proj(x[:1])
        key=self.k_proj(x)
        value=self.v_proj(x)
        query = tf.reshape(query, [bsz, 1, self.num_heads, -1])
        query = tf.transpose(query, [0, 2, 1, 3])
        query = tf.multiply(query, 1.0 / tf.math.sqrt(float(embed_dim)))
        key = tf.reshape(key, [bsz, tgt_len, self.num_heads, -1])
        key = tf.transpose(key, [0, 2, 3, 1])
        value = tf.reshape(value, [bsz, tgt_len, self.num_heads, -1])
        value = tf.transpose(value, [0, 2, 1, 3])
        qk = tf.matmul(query, key)
        w = tf.nn.softmax(qk)
        wv = tf.reshape(tf.transpose(tf.matmul(w, value), [0, 2, 1, 3]), [1, bsz, -1])
        x = self.c_proj(wv)
        return tf.squeeze(x, 0)


class ModifiedResNet:
    """
    A ResNet class that is similar to torchvision's but contains the following changes:
    - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
    - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
    - The final pooling layer is a QKV attention instead of an average pool
    """

    def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
        self.output_dim = output_dim
        self.input_resolution = input_resolution

        # the 3-layer stem
        self.zeropadding2d = ZeroPadding2D(padding=1)
        self.conv1 = Conv2d(width // 2, kernel_size=3, strides=2, use_bias=False)
        self.bn1 = BatchNormalization()
        self.relu1 = tf.nn.relu
        self.conv2 = Conv2d(width // 2, kernel_size=3, use_bias=False)
        self.bn2 = BatchNormalization()
        self.relu2 = tf.nn.relu
        self.conv3 = Conv2d(width, kernel_size=3, use_bias=False)
        self.bn3 = BatchNormalization()
        self.relu3 = tf.nn.relu
        self.avgpool = AveragePooling2D(2, 2, 'VALID')

        # residual layers
        self._inplanes = width  # this is a *mutable* variable used during construction
        self.layer1 = self._make_layer(width, layers[0])
        self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
        self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
        self.layer4 = self._make_layer(width * 8, layers[3], stride=2)

        embed_dim = width * 32  # the ResNet feature dimension
        self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)

    def _make_layer(self, planes, blocks, stride=1):
        layers = tf.keras.Sequential()
        layers.add(Bottleneck(self._inplanes, planes, stride))

        self._inplanes = planes * Bottleneck.expansion
        for _ in range(1, blocks):
            layers.add(Bottleneck(self._inplanes, planes))

        return layers

    def __call__(self, x):
        def stem(x):
            x = self.zeropadding2d(x)
            x = self.conv1(x)
            x = self.relu1(self.bn1(x))
            x = self.zeropadding2d(x)
            x = self.conv2(x)
            x = self.relu2(self.bn2(x))
            x = self.zeropadding2d(x)
            x = self.conv3(x)
            x = self.relu3(self.bn3(x))
            x = self.avgpool(x)
            return x

        x = stem(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.attnpool(x)

        return x


class LayerNorm:
    """Subclass torch's LayerNorm to handle fp16."""
    def __init__(self, input_size):
        self.layer_norm = LayerNormalization()

    def __call__(self, x):
        orig_type = x.dtype
        ret = self.layer_norm(tf.cast(x, tf.float32))
        return tf.cast(ret, orig_type)


class QuickGELU(tf.keras.layers.Layer):
    def __init__(self):
        super(QuickGELU, self).__init__()
        
    def __call__(self, x):
        return x * tf.nn.sigmoid(1.702 * x)


class ResidualAttentionBlock(tf.keras.layers.Layer):
    def __init__(self, d_model: int, n_head: int, attn_mask = None):
        super(ResidualAttentionBlock, self).__init__()
        self.attn = MultiHeadAttention(n_head, d_model)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = tf.keras.Sequential()
        self.mlp.add(Dense(d_model * 4))
        self.mlp.add(QuickGELU())
        self.mlp.add(Dense(d_model))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x):
        self.attn_mask = tf.cast(self.attn_mask, x.dtype) if self.attn_mask is not None else None
        return self.attn(x, x, attention_mask=self.attn_mask)[0]

    def __call__(self, x):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer:
    def __init__(self, width: int, layers: int, heads: int, attn_mask = None):
        self.width = width
        self.layers = layers
        self.resblocks = tf.keras.Sequential()
        for _ in range(layers):
            self.resblocks.add(ResidualAttentionBlock(width, heads, attn_mask))

    def __call__(self, x):
        return self.resblocks(x)


class VisionTransformer(tf.keras.layers.Layer):
    def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        self.conv1 = Conv2d(width, kernel_size=patch_size, strides=patch_size, use_bias=False)

        scale = width ** -0.5
        self.class_embedding = self.add_weight(
            name='class_embedding',
            shape=[self.width],
            initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=1.0) * self.scale,
            trainable=True
        )
        self.positional_embedding = self.add_weight(
            name='positional_embedding',
            shape=[(self.input_resolution // self.patch_size) ** 2 + 1, self.width],
            initializer=tf.keras.initializers.RandomNormal(mean=0., stddev=1.0) * self.scale,
            trainable=True
        )
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads)

        self.ln_post = LayerNorm(width)
        self.proj = tf.Variable(scale * tf.random.normal(width, output_dim))

    def __call__(self, x, train_flag=True):
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = tf.reshape(x, [x.shape[0], x.shape[1], -1])  # shape = [*, width, grid ** 2]
        x = tf.transpose(x, (0, 2, 1))  # shape = [*, grid ** 2, width]
        x = tf.concat([tf.cast(self.class_embedding, x.dtype) + tf.zeros([x.shape[0], 1, x.shape[-1]], dtype=x.dtype), x], axis=1)  # shape = [*, grid ** 2 + 1, width]
        x = x + tf.cast(self.positional_embedding, x.dtype)
        x = self.ln_pre(x)

        x = tf.transpose(x, (1, 0, 2))  # NLD -> LND
        x = self.transformer(x)
        x = tf.transpose(x, (1, 0, 2))  # LND -> NLD

        x = self.ln_post(x[:, 0, :])

        if self.proj is not None:
            x = tf.matmul(x, self.proj)

        return x


class CLIP(Model):
    def __init__(self,
                 embed_dim: int,
                 # vision
                 image_resolution: int,
                 vision_layers: Union[Tuple[int, int, int, int], int],
                 vision_width: int,
                 vision_patch_size: int,
                 # text
                 context_length: int,
                 vocab_size: int,
                 transformer_width: int,
                 transformer_heads: int,
                 transformer_layers: int
                 ):
        super(CLIP, self).__init__()
        
        self.context_length = context_length

        if isinstance(vision_layers, (tuple, list)):
            vision_heads = vision_width * 32 // 64
            self.visual = ModifiedResNet(
                layers=vision_layers,
                output_dim=embed_dim,
                heads=vision_heads,
                input_resolution=image_resolution,
                width=vision_width
            )
        else:
            vision_heads = vision_width // 64
            self.visual = VisionTransformer(
                input_resolution=image_resolution,
                patch_size=vision_patch_size,
                width=vision_width,
                layers=vision_layers,
                heads=vision_heads,
                output_dim=embed_dim
            )

        self.transformer = Transformer(
            width=transformer_width,
            layers=transformer_layers,
            heads=transformer_heads,
            attn_mask=self.build_attention_mask()
        )

        self.vocab_size = vocab_size
        self.token_embedding = self.add_weight(
            name='token_embedding',
            shape=(vocab_size, transformer_width),
            initializer=tf.keras.initializers.RandomNormal(stddev=0.02),
            trainable=True
        )
        self.positional_embedding = self.add_weight(
            name='positional_embedding',
            shape=(self.context_length, transformer_width),
            initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
            trainable=True
        )
        self.ln_final = LayerNorm(transformer_width)

        self.text_projection = self.add_weight(
            name='text_projection',
            shape=(transformer_width, embed_dim),
            initializer=tf.keras.initializers.RandomNormal(stddev=transformer_width ** -0.5),
            trainable=True
        )
        self.logit_scale = self.add_weight(
            name='logit_scale',
            shape=[],
            initializer=tf.keras.initializers.Constant(np.log(1 / 0.07)),
            trainable=True
        )

    def build_attention_mask(self):
        mask = tf.ones((self.context_length, self.context_length))
        mask = tf.linalg.band_part(mask, 0, -1) # zero out the upper diagonal
        mask = mask * -1e9 # fill with -1e9
        return mask

    def encode_image(self, image):
        return self.visual(image)

    def encode_text(self, text):
        x = tf.gather(self.token_embedding, text)  # [batch_size, n_ctx, d_model]

        x = x + self.positional_embedding
        x = tf.transpose(x, (1, 0, 2))  # NLD -> LND
        x = self.transformer(x)
        x = tf.transpose(x, (1, 0, 2))  # LND -> NLD
        x = self.ln_final(x)

        # x.shape = [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = tf.matmul(tf.gather_nd(x, tf.stack([tf.range(x.shape[0], dtype='int32'), 
                        tf.argmax(text, axis=-1, output_type='int32')], axis=1)), self.text_projection)

        return x

    def __call__(self, image, text):
        image_features = self.encode_image(image)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / tf.norm(image_features, axis=1, keepdims=True)
        text_features = text_features / tf.norm(text_features, axis=1, keepdims=True)

        # cosine similarity as logits
        logit_scale = tf.math.exp(self.logit_scale)
        logits_per_image = tf.matmul(logit_scale * image_features, tf.transpose(text_features))
        logits_per_text = tf.transpose(logits_per_image)

        # shape = [global_batch_size, global_batch_size]
        return logits_per_image, logits_per_text