File size: 10,260 Bytes
2558fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Gemma model implementation."""
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
import dataclasses
@dataclasses.dataclass
class GemmaConfig:
# The number of tokens in the vocabulary.
vocab_size: int = 256000
# The maximum sequence length that this model might ever be used with.
max_position_embeddings: int = 8192
# The number of blocks in the model.
num_hidden_layers: int = 28
# The number of attention heads used in the attention layers of the model.
num_attention_heads: int = 16
# The number of key-value heads for implementing attention.
num_key_value_heads: int = 16
# The hidden size of the model.
hidden_size: int = 3072
# The dimension of the MLP representations.
intermediate_size: int = 24576
# The number of head dimensions.
head_dim: int = 256
# The epsilon used by the rms normalization layers.
rms_norm_eps: float = 1e-6
def precompute_freqs_cis(dim: int,
end: int,
theta: float = 10000.0):
"""Precomputes the frequency cis."""
freqs = 1.0 / (theta**(tf.cast(tf.range(0, dim, 2)[:(dim // 2)], 'float32') / dim))
t = tf.range(end)
freqs = tf.cast(tf.experimental.numpy.outer(t, freqs), 'float32')
freqs_cis = tf.complex(tf.ones_like(freqs), freqs) # complex64
return freqs_cis
def apply_rotary_emb(x, freqs_cis):
"""Applies the rotary embedding to the query and key tensors."""
x_ = tf.complex(
*tf.split(tf.cast(tf.transpose(x, [0, 2, 1, 3]), 'float32'), num_or_size_splits=2, axis=-1),
)
x_ = x_ * tf.cast(freqs_cis, x_.dtype)
x_out = tf.cast(tf.stack(tf.math.real(x_),
tf.math.imag(x_), axis=-1), x.dtype)
x_out = tf.concat(tf.split(x_out, num_or_size_splits=2, axis=-1), axis=-2)
x_out = tf.transpose(tf.reshape(x_out, (x_out.shape[0], x_out.shape[1], x_out.shape[2],
-1)), (0, 2, 1, 3))
return x_out
class Embedder:
"""Embedder module."""
def __init__(self, config: GemmaConfig):
self.vocab_size = config.vocab_size
self.embed_dim = config.hidden_size
self.input_embedding_table = tf.Variable(tf.random.normal((self.vocab_size, self.embed_dim)))
def encode(self, x):
x = tf.gather(self.input_embedding_table, x)
x *= tf.cast(tf.math.sqrt(self.embed_dim), x.dtype)
return x
def decode(self, x):
return tf.matmul(x, tf.transpose(self.input_embedding_table))
class RMSNorm:
def __init__(
self,
dim: int,
eps: float = 1e-6,
add_unit_offset: bool = True,
):
self.eps = eps
self.add_unit_offset = add_unit_offset
self.weight = tf.Variable(tf.random.zeros((dim)))
def _norm(self, x):
return x * tf.math.rsqrt(tf.reduce_mean(tf.math.pow(x, 2), axis=-1, keepdims=True) + self.eps)
def __call__(self, x):
x = tf.cast(self._norm(tf.cast(x, 'float32')), x.dtype)
if self.add_unit_offset:
output = x * (1 + self.weight)
else:
output = x * self.weight
return output
class GemmaMLP:
def __init__(
self,
hidden_size: int,
intermediate_size: int,
):
self.gate_proj = Dense(intermediate_size)
self.up_proj = Dense(intermediate_size)
self.down_proj = Dense(hidden_size)
def __call__(self, x):
gate = self.gate_proj(x)
gate = tf.nn.gelu(gate)
up = self.up_proj(x)
fuse = gate * up
outputs = self.down_proj(fuse)
return outputs
class GemmaAttention:
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
):
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.hidden_size = hidden_size
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = Dense(
(self.num_heads + 2 * self.num_kv_heads) * self.head_dim,
)
self.o_proj = Dense(
self.hidden_size,
)
def __call__(
self,
hidden_states,
freqs_cis,
kv_write_indices,
kv_cache,
mask,
):
hidden_states_shape = hidden_states.shape
assert len(hidden_states_shape) == 3
batch_size, input_len, _ = hidden_states_shape
qkv = self.qkv_proj(hidden_states)
xq, xk, xv = tf.split(qkv, [self.q_size, self.kv_size, self.kv_size],
axis=-1)
xq = tf.reshape(xq, (batch_size, -1, self.num_heads, self.head_dim))
xk = tf.reshape(xk, (batch_size, -1, self.num_kv_heads, self.head_dim))
xv = tf.reshape(xv, (batch_size, -1, self.num_kv_heads, self.head_dim))
# Positional embedding.
xq = apply_rotary_emb(xq, freqs_cis=freqs_cis)
xk = apply_rotary_emb(xk, freqs_cis=freqs_cis)
# Write new kv cache.
# [batch_size, input_len, n_local_kv_heads, head_dim]
k_cache, v_cache = kv_cache
k_cache.assign(tf.tensor_scatter_nd_update(k_cache, kv_write_indices, xk))
v_cache.assign(tf.tensor_scatter_nd_update(v_cache, kv_write_indices, xv))
key = k_cache
value = v_cache
if self.num_kv_heads != self.num_heads:
# [batch_size, max_seq_len, n_local_heads, head_dim]
batch_size, seq_len, num_heads, head_dim = key.shape
key = tf.reshape(tf.tile(key[:, :, :, None, :], [1, 1, 1, self.num_queries_per_kv, 1]),
[batch_size, seq_len, num_heads * self.num_queries_per_kv, head_dim])
batch_size, seq_len, num_heads, head_dim = value.shape
value = tf.reshape(tf.tile(value[:, :, :, None, :], [1, 1, 1, self.num_queries_per_kv, 1]),
[batch_size, seq_len, num_heads * self.num_queries_per_kv, head_dim])
# [batch_size, n_local_heads, input_len, head_dim]
q = tf.transpose(xq, (0, 2, 1, 3))
# [batch_size, n_local_heads, max_seq_len, head_dim]
k = tf.transpose(key, (0, 2, 1, 3))
v = tf.transpose(value, (0, 2, 1, 3))
# [batch_size, n_local_heads, input_len, max_seq_len]
scores = tf.matmul(q, tf.transpose(k, (0, 1, 3, 2))) * self.scaling
scores = scores + mask
scores = tf.cast(tf.nn.softmax(tf.cast(scores, 'float32'), axis=-1), q.dtype)
# [batch_size, n_local_heads, input_len, head_dim]
output = tf.matmul(scores, v)
# [batch_size, input_len, hidden_dim]
output = tf.reshape((tf.transpose(output, (0, 2, 1, 3)),
(batch_size, input_len, -1)))
output = self.o_proj(output)
return output
class GemmaDecoderLayer:
def __init__(
self,
config: GemmaConfig,
):
self.self_attn = GemmaAttention(
hidden_size=config.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
head_dim=config.head_dim,
)
self.mlp = GemmaMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def __call__(
self,
hidden_states,
freqs_cis,
kv_write_indices,
kv_cache,
mask,
):
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
freqs_cis=freqs_cis,
kv_write_indices=kv_write_indices,
kv_cache=kv_cache,
mask=mask,
)
hidden_states = residual + hidden_states
# MLP
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Gemma(Model):
def __init__(self, config: GemmaConfig):
super(Gemma, self).__init__()
self.config = config
self.vocab_size = config.vocab_size
self.embedder = Embedder()
self.layers = []
for _ in range(config.num_hidden_layers):
self.layers.append(GemmaDecoderLayer(config))
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.output = Dense(config.vocab_size)
def __call__(
self,
data,
freqs_cis,
kv_write_indices,
kv_caches,
mask
):
hidden_states = self.embedder.encode(data)
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states = layer(
hidden_states=hidden_states,
freqs_cis=freqs_cis,
kv_write_indices=kv_write_indices,
kv_cache=kv_caches[i],
mask=mask,
)
hidden_states = self.norm(hidden_states)
logits = self.embedder.decode(hidden_states)
return logits |