File size: 9,804 Bytes
65d3bdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
import tensorflow as tf
from tensorflow.keras.layers import Embedding,Dense
from tensorflow.keras import Model
import math
from dataclasses import dataclass
from typing import Optional
@dataclass
class ModelArgs:
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = -1
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None
norm_eps: float = 1e-5
rope_theta: float = 500000
max_batch_size: int = 32
max_seq_len: int = 2048
class RMSNorm:
def __init__(self, dim: int, eps: float = 1e-6):
self.eps = eps
self.weight = tf.Variable(tf.ones((dim)))
def _norm(self, x):
return x * tf.math.rsqrt(tf.reduce_mean(tf.pow(x, 2), -1, keepdims=True) + self.eps)
def __call__(self, x):
output = tf.cast(self._norm(tf.cast(x, 'float32')), x.dtype)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (tf.cast(tf.range(0, dim, 2)[: (dim // 2)], 'float32') / dim))
t = tf.range(end, dtype='float32')
freqs = tf.experimental.numpy.outer(t, freqs)
freqs_cis = tf.complex(tf.ones_like(freqs), freqs)
real_part = tf.math.cos(freqs)
imag_part = tf.math.sin(freqs)
freqs_cis = tf.complex(real_part, imag_part) # complex64
return freqs_cis
def reshape_for_broadcast(freqs_cis, x):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return tf.reshape(freqs_cis, shape)
def apply_rotary_emb(
xq,
xk,
freqs_cis,
):
xq = tf.reshape(tf.cast(xq, 'float32'), (xq.shape[:-1] + (xq.shape[-1] // 2, 2)))
real_part = xq[..., 0]
imag_part = xq[..., 1]
xq_ = tf.complex(real_part, imag_part)
xk = tf.reshape(tf.cast(xk, 'float32'), (xk.shape[:-1] + (xk.shape[-1] // 2, 2)))
real_part = xk[..., 0]
imag_part = xk[..., 1]
xk_ = tf.complex(real_part, imag_part)
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_freqs_cis = xq_ * freqs_cis
xq_out = tf.stack([tf.math.real(xq_freqs_cis), tf.math.imag(xq_freqs_cis)], axis=-1)
shape = xq_out.shape
xq_out = tf.reshape(xq_out, [-1, shape[1], shape[2], shape[3] * shape[4]])
xk_freqs_cis = xk_ * freqs_cis
xk_out = tf.stack([tf.math.real(xk_freqs_cis), tf.math.imag(xk_freqs_cis)], axis=-1)
shape = xk_out.shape
xk_out = tf.reshape(xk_out, [-1, shape[1], shape[2], shape[3] * shape[4]])
return tf.cast(xq_out, xq.dtype), tf.cast(xk_out, xk.dtype)
def repeat_kv(x, n_rep: int):
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return tf.reshape(tf.tile(x[:, :, :, None, :], [1, 1, 1, n_rep, 1]), (bs, slen, n_kv_heads * n_rep, head_dim))
class Attention:
def __init__(self, args: ModelArgs):
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
model_parallel_size = 1
self.n_local_heads = args.n_heads // model_parallel_size
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = Dense(
args.n_heads * self.head_dim,
use_bias=False,
)
self.wk = Dense(
self.n_kv_heads * self.head_dim,
use_bias=False,
)
self.wv = Dense(
self.n_kv_heads * self.head_dim,
use_bias=False,
)
self.wo = Dense(
args.dim,
use_bias=False,
)
self.cache_k = tf.Variable(tf.zeros(
(
args.max_batch_size,
args.max_seq_len,
self.n_local_kv_heads,
self.head_dim,
)
), trainable=False)
self.cache_v = tf.Variable(tf.zeros(
(
args.max_batch_size,
args.max_seq_len,
self.n_local_kv_heads,
self.head_dim,
)
), trainable=False)
def __call__(
self,
x,
start_pos: int,
freqs_cis,
mask,
):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = tf.reshape(xq, (bsz, seqlen, self.n_local_heads, self.head_dim))
xk = tf.reshape(xk, (bsz, seqlen, self.n_local_kv_heads, self.head_dim))
xv = tf.reshape(xv, (bsz, seqlen, self.n_local_kv_heads, self.head_dim))
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
self.cache_k = tf.cast(self.cache_k, xq.dtype)
self.cache_v = tf.cast(self.cache_v, xq.dtype)
self.cache_k[:bsz, start_pos : start_pos + seqlen].assign(xk)
self.cache_v[:bsz, start_pos : start_pos + seqlen].assign(xv)
keys = self.cache_k[:bsz, : start_pos + seqlen]
values = self.cache_v[:bsz, : start_pos + seqlen]
# repeat k/v heads if n_kv_heads < n_heads
keys = repeat_kv(
keys, self.n_rep
) # (bs, cache_len + seqlen, n_local_heads, head_dim)
values = repeat_kv(
values, self.n_rep
) # (bs, cache_len + seqlen, n_local_heads, head_dim)
xq = tf.transpose(xq, (0, 2, 1, 3)) # (bs, n_local_heads, seqlen, head_dim)
keys = tf.transpose(keys, (0, 2, 1, 3)) # (bs, n_local_heads, cache_len + seqlen, head_dim)
values = tf.transpose(values,
(0, 2, 1, 3)
) # (bs, n_local_heads, cache_len + seqlen, head_dim)
scores = tf.matmul(xq, tf.transpose(keys, (0, 1, 3, 2))) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = tf.cast(tf.nn.softmax(tf.cast(scores, 'float32')), xq.dtype)
output = tf.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim)
output = tf.reshape(tf.transpose(output, (0, 2, 1, 3)), (bsz, seqlen, -1))
return self.wo(output)
class FeedForward:
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
):
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = Dense(
hidden_dim, use_bias=False
)
self.w2 = Dense(
dim, use_bias=False
)
self.w3 = Dense(
hidden_dim, use_bias=False
)
def __call__(self, x):
return self.w2(tf.nn.silu(self.w1(x)) * self.w3(x))
class TransformerBlock:
def __init__(self, layer_id: int, args: ModelArgs):
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=4 * args.dim,
multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def __call__(
self,
x,
start_pos,
freqs_cis,
mask,
):
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
out = h + self.feed_forward(self.ffn_norm(h))
return out
class Llama3(Model):
def __init__(self, params: ModelArgs):
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = Embedding(
params.vocab_size, params.dim
)
self.layers_ = []
for layer_id in range(params.n_layers):
self.layers_.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output_ = Dense(
params.vocab_size, use_bias=False
)
self.freqs_cis = precompute_freqs_cis(
params.dim // params.n_heads,
params.max_seq_len * 2,
params.rope_theta,
)
def __call__(self, tokens, start_pos: int):
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
self.freqs_cis = self.freqs_cis
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
mask = None
if seqlen > 1:
mask = tf.fill([seqlen, seqlen], float("-inf"))
mask = tf.linalg.band_part(mask, 0, -1)
mask = mask - tf.linalg.band_part(mask, 0, 0)
# When performing key-value caching, we compute the attention scores
# only for the new sequence. Thus, the matrix of scores is of size
# (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for
# j > cache_len + i, since row i corresponds to token cache_len + i.
mask = tf.linalg.set_diag(mask, tf.zeros(seqlen))
mask = tf.cast(mask, h.dtype)
for layer in self.layers_:
h = layer(h, start_pos, freqs_cis, mask)
h = self.norm(h)
output = tf.cast(self.output_(h), 'float32')
return output |