|
|
|
|
|
import tensorflow as tf |
|
from tensorflow.keras.layers import Embedding,Dense |
|
from tensorflow.keras import Model |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
|
|
@dataclass |
|
class ModelArgs: |
|
dim: int = 4096 |
|
n_layers: int = 32 |
|
n_heads: int = 32 |
|
n_kv_heads: Optional[int] = None |
|
vocab_size: int = -1 |
|
multiple_of: int = 256 |
|
ffn_dim_multiplier: Optional[float] = None |
|
norm_eps: float = 1e-5 |
|
rope_theta: float = 500000 |
|
|
|
max_batch_size: int = 32 |
|
max_seq_len: int = 2048 |
|
|
|
|
|
class RMSNorm(tf.keras.layers.Layer): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
self.eps = eps |
|
self.weight = self.add_weight( |
|
name='weight', |
|
shape=(self.dim,), |
|
initializer=tf.keras.initializers.Ones(), |
|
trainable=True |
|
) |
|
|
|
def _norm(self, x): |
|
return x * tf.math.rsqrt(tf.reduce_mean(tf.pow(x, 2), -1, keepdims=True) + self.eps) |
|
|
|
def __call__(self, x): |
|
output = tf.cast(self._norm(tf.cast(x, 'float32')), x.dtype) |
|
return output * self.weight |
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): |
|
freqs = 1.0 / (theta ** (tf.cast(tf.range(0, dim, 2)[: (dim // 2)], 'float32') / dim)) |
|
t = tf.range(end, dtype='float32') |
|
freqs = tf.experimental.numpy.outer(t, freqs) |
|
freqs_cis = tf.complex(tf.ones_like(freqs), freqs) |
|
real_part = tf.math.cos(freqs) |
|
imag_part = tf.math.sin(freqs) |
|
freqs_cis = tf.complex(real_part, imag_part) |
|
return freqs_cis |
|
|
|
|
|
def reshape_for_broadcast(freqs_cis, x): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return tf.reshape(freqs_cis, shape) |
|
|
|
|
|
def apply_rotary_emb( |
|
xq, |
|
xk, |
|
freqs_cis, |
|
): |
|
xq = tf.reshape(tf.cast(xq, 'float32'), (xq.shape[:-1] + (xq.shape[-1] // 2, 2))) |
|
real_part = xq[..., 0] |
|
imag_part = xq[..., 1] |
|
xq_ = tf.complex(real_part, imag_part) |
|
xk = tf.reshape(tf.cast(xk, 'float32'), (xk.shape[:-1] + (xk.shape[-1] // 2, 2))) |
|
real_part = xk[..., 0] |
|
imag_part = xk[..., 1] |
|
xk_ = tf.complex(real_part, imag_part) |
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) |
|
xq_freqs_cis = xq_ * freqs_cis |
|
xq_out = tf.stack([tf.math.real(xq_freqs_cis), tf.math.imag(xq_freqs_cis)], axis=-1) |
|
shape = xq_out.shape |
|
xq_out = tf.reshape(xq_out, [-1, shape[1], shape[2], shape[3] * shape[4]]) |
|
xk_freqs_cis = xk_ * freqs_cis |
|
xk_out = tf.stack([tf.math.real(xk_freqs_cis), tf.math.imag(xk_freqs_cis)], axis=-1) |
|
shape = xk_out.shape |
|
xk_out = tf.reshape(xk_out, [-1, shape[1], shape[2], shape[3] * shape[4]]) |
|
return tf.cast(xq_out, xq.dtype), tf.cast(xk_out, xk.dtype) |
|
|
|
|
|
def repeat_kv(x, n_rep: int): |
|
bs, slen, n_kv_heads, head_dim = x.shape |
|
if n_rep == 1: |
|
return x |
|
return tf.reshape(tf.tile(x[:, :, :, None, :], [1, 1, 1, n_rep, 1]), (bs, slen, n_kv_heads * n_rep, head_dim)) |
|
|
|
|
|
class Attention(tf.keras.layers.Layer): |
|
def __init__(self, args: ModelArgs): |
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads |
|
model_parallel_size = 1 |
|
self.n_local_heads = args.n_heads // model_parallel_size |
|
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size |
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads |
|
self.head_dim = args.dim // args.n_heads |
|
|
|
self.wq = Dense( |
|
args.n_heads * self.head_dim, |
|
use_bias=False, |
|
) |
|
self.wk = Dense( |
|
self.n_kv_heads * self.head_dim, |
|
use_bias=False, |
|
) |
|
self.wv = Dense( |
|
self.n_kv_heads * self.head_dim, |
|
use_bias=False, |
|
) |
|
self.wo = Dense( |
|
args.dim, |
|
use_bias=False, |
|
) |
|
|
|
self.cache_k = self.add_weight( |
|
name='cache_k', |
|
shape=( |
|
args.max_batch_size, |
|
args.max_seq_len, |
|
self.n_local_kv_heads, |
|
self.head_dim, |
|
), |
|
initializer=tf.keras.initializers.Zeros(), |
|
trainable=False |
|
) |
|
|
|
self.cache_v = self.add_weight( |
|
name='cache_v', |
|
shape=( |
|
args.max_batch_size, |
|
args.max_seq_len, |
|
self.n_local_kv_heads, |
|
self.head_dim, |
|
), |
|
initializer=tf.keras.initializers.Zeros(), |
|
trainable=False |
|
) |
|
|
|
def __call__( |
|
self, |
|
x, |
|
start_pos: int, |
|
freqs_cis, |
|
mask, |
|
): |
|
bsz, seqlen, _ = x.shape |
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) |
|
|
|
xq = tf.reshape(xq, (bsz, seqlen, self.n_local_heads, self.head_dim)) |
|
xk = tf.reshape(xk, (bsz, seqlen, self.n_local_kv_heads, self.head_dim)) |
|
xv = tf.reshape(xv, (bsz, seqlen, self.n_local_kv_heads, self.head_dim)) |
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) |
|
|
|
self.cache_k = tf.cast(self.cache_k, xq.dtype) |
|
self.cache_v = tf.cast(self.cache_v, xq.dtype) |
|
|
|
self.cache_k[:bsz, start_pos : start_pos + seqlen].assign(xk) |
|
self.cache_v[:bsz, start_pos : start_pos + seqlen].assign(xv) |
|
|
|
keys = self.cache_k[:bsz, : start_pos + seqlen] |
|
values = self.cache_v[:bsz, : start_pos + seqlen] |
|
|
|
|
|
keys = repeat_kv( |
|
keys, self.n_rep |
|
) |
|
values = repeat_kv( |
|
values, self.n_rep |
|
) |
|
|
|
xq = tf.transpose(xq, (0, 2, 1, 3)) |
|
keys = tf.transpose(keys, (0, 2, 1, 3)) |
|
values = tf.transpose(values, |
|
(0, 2, 1, 3) |
|
) |
|
scores = tf.matmul(xq, tf.transpose(keys, (0, 1, 3, 2))) / math.sqrt(self.head_dim) |
|
if mask is not None: |
|
scores = scores + mask |
|
scores = tf.cast(tf.nn.softmax(tf.cast(scores, 'float32')), xq.dtype) |
|
output = tf.matmul(scores, values) |
|
output = tf.reshape(tf.transpose(output, (0, 2, 1, 3)), (bsz, seqlen, -1)) |
|
return self.wo(output) |
|
|
|
|
|
class FeedForward: |
|
def __init__( |
|
self, |
|
dim: int, |
|
hidden_dim: int, |
|
multiple_of: int, |
|
ffn_dim_multiplier: Optional[float], |
|
): |
|
hidden_dim = int(2 * hidden_dim / 3) |
|
|
|
if ffn_dim_multiplier is not None: |
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim) |
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
|
self.w1 = Dense( |
|
hidden_dim, use_bias=False |
|
) |
|
self.w2 = Dense( |
|
dim, use_bias=False |
|
) |
|
self.w3 = Dense( |
|
hidden_dim, use_bias=False |
|
) |
|
|
|
def __call__(self, x): |
|
return self.w2(tf.nn.silu(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class TransformerBlock: |
|
def __init__(self, layer_id: int, args: ModelArgs): |
|
self.n_heads = args.n_heads |
|
self.dim = args.dim |
|
self.head_dim = args.dim // args.n_heads |
|
self.attention = Attention(args) |
|
self.feed_forward = FeedForward( |
|
dim=args.dim, |
|
hidden_dim=4 * args.dim, |
|
multiple_of=args.multiple_of, |
|
ffn_dim_multiplier=args.ffn_dim_multiplier, |
|
) |
|
self.layer_id = layer_id |
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
|
def __call__( |
|
self, |
|
x, |
|
start_pos, |
|
freqs_cis, |
|
mask, |
|
): |
|
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask) |
|
out = h + self.feed_forward(self.ffn_norm(h)) |
|
return out |
|
|
|
|
|
class Llama3(Model): |
|
def __init__(self, params: ModelArgs): |
|
self.params = params |
|
self.vocab_size = params.vocab_size |
|
self.n_layers = params.n_layers |
|
|
|
self.tok_embeddings = Embedding( |
|
params.vocab_size, params.dim |
|
) |
|
|
|
self.layers_ = [] |
|
for layer_id in range(params.n_layers): |
|
self.layers_.append(TransformerBlock(layer_id, params)) |
|
|
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps) |
|
self.output_ = Dense( |
|
params.vocab_size, use_bias=False |
|
) |
|
|
|
self.freqs_cis = precompute_freqs_cis( |
|
params.dim // params.n_heads, |
|
params.max_seq_len * 2, |
|
params.rope_theta, |
|
) |
|
|
|
def __call__(self, tokens, start_pos: int): |
|
_bsz, seqlen = tokens.shape |
|
h = self.tok_embeddings(tokens) |
|
self.freqs_cis = self.freqs_cis |
|
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] |
|
|
|
mask = None |
|
if seqlen > 1: |
|
mask = tf.fill([seqlen, seqlen], float("-inf")) |
|
|
|
mask = tf.linalg.band_part(mask, 0, -1) |
|
mask = mask - tf.linalg.band_part(mask, 0, 0) |
|
|
|
|
|
|
|
|
|
|
|
mask = tf.linalg.set_diag(mask, tf.zeros(seqlen)) |
|
mask = tf.cast(mask, h.dtype) |
|
|
|
for layer in self.layers_: |
|
h = layer(h, start_pos, freqs_cis, mask) |
|
h = self.norm(h) |
|
output = tf.cast(self.output_(h), 'float32') |
|
return output |