# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement. import tensorflow as tf from tensorflow.keras.layers import Embedding,Dense from tensorflow.keras import Model import math from dataclasses import dataclass from typing import Optional @dataclass class ModelArgs: dim: int = 4096 n_layers: int = 32 n_heads: int = 32 n_kv_heads: Optional[int] = None vocab_size: int = -1 multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 ffn_dim_multiplier: Optional[float] = None norm_eps: float = 1e-5 rope_theta: float = 500000 max_batch_size: int = 32 max_seq_len: int = 2048 class RMSNorm: def __init__(self, dim: int, eps: float = 1e-6): self.eps = eps self.weight = tf.Variable(tf.ones((dim))) def _norm(self, x): return x * tf.math.rsqrt(tf.reduce_mean(tf.pow(x, 2), -1, keepdims=True) + self.eps) def __call__(self, x): output = tf.cast(self._norm(tf.cast(x, 'float32')), x.dtype) return output * self.weight def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): freqs = 1.0 / (theta ** (tf.cast(tf.range(0, dim, 2)[: (dim // 2)], 'float32') / dim)) t = tf.range(end, dtype='float32') freqs = tf.experimental.numpy.outer(t, freqs) freqs_cis = tf.complex(tf.ones_like(freqs), freqs) real_part = tf.math.cos(freqs) imag_part = tf.math.sin(freqs) freqs_cis = tf.complex(real_part, imag_part) # complex64 return freqs_cis def reshape_for_broadcast(freqs_cis, x): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return tf.reshape(freqs_cis, shape) def apply_rotary_emb( xq, xk, freqs_cis, ): xq = tf.reshape(tf.cast(xq, 'float32'), (xq.shape[:-1] + (xq.shape[-1] // 2, 2))) real_part = xq[..., 0] imag_part = xq[..., 1] xq_ = tf.complex(real_part, imag_part) xk = tf.reshape(tf.cast(xk, 'float32'), (xk.shape[:-1] + (xk.shape[-1] // 2, 2))) real_part = xk[..., 0] imag_part = xk[..., 1] xk_ = tf.complex(real_part, imag_part) freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_freqs_cis = xq_ * freqs_cis xq_out = tf.stack([tf.math.real(xq_freqs_cis), tf.math.imag(xq_freqs_cis)], axis=-1) shape = xq_out.shape xq_out = tf.reshape(xq_out, [-1, shape[1], shape[2], shape[3] * shape[4]]) xk_freqs_cis = xk_ * freqs_cis xk_out = tf.stack([tf.math.real(xk_freqs_cis), tf.math.imag(xk_freqs_cis)], axis=-1) shape = xk_out.shape xk_out = tf.reshape(xk_out, [-1, shape[1], shape[2], shape[3] * shape[4]]) return tf.cast(xq_out, xq.dtype), tf.cast(xk_out, xk.dtype) def repeat_kv(x, n_rep: int): bs, slen, n_kv_heads, head_dim = x.shape if n_rep == 1: return x return tf.reshape(tf.tile(x[:, :, :, None, :], [1, 1, 1, n_rep, 1]), (bs, slen, n_kv_heads * n_rep, head_dim)) class Attention: def __init__(self, args: ModelArgs): self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads model_parallel_size = 1 self.n_local_heads = args.n_heads // model_parallel_size self.n_local_kv_heads = self.n_kv_heads // model_parallel_size self.n_rep = self.n_local_heads // self.n_local_kv_heads self.head_dim = args.dim // args.n_heads self.wq = Dense( args.n_heads * self.head_dim, use_bias=False, ) self.wk = Dense( self.n_kv_heads * self.head_dim, use_bias=False, ) self.wv = Dense( self.n_kv_heads * self.head_dim, use_bias=False, ) self.wo = Dense( args.dim, use_bias=False, ) self.cache_k = tf.Variable(tf.zeros( ( args.max_batch_size, args.max_seq_len, self.n_local_kv_heads, self.head_dim, ) ), trainable=False) self.cache_v = tf.Variable(tf.zeros( ( args.max_batch_size, args.max_seq_len, self.n_local_kv_heads, self.head_dim, ) ), trainable=False) def __call__( self, x, start_pos: int, freqs_cis, mask, ): bsz, seqlen, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) xq = tf.reshape(xq, (bsz, seqlen, self.n_local_heads, self.head_dim)) xk = tf.reshape(xk, (bsz, seqlen, self.n_local_kv_heads, self.head_dim)) xv = tf.reshape(xv, (bsz, seqlen, self.n_local_kv_heads, self.head_dim)) xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) self.cache_k = tf.cast(self.cache_k, xq.dtype) self.cache_v = tf.cast(self.cache_v, xq.dtype) self.cache_k[:bsz, start_pos : start_pos + seqlen].assign(xk) self.cache_v[:bsz, start_pos : start_pos + seqlen].assign(xv) keys = self.cache_k[:bsz, : start_pos + seqlen] values = self.cache_v[:bsz, : start_pos + seqlen] # repeat k/v heads if n_kv_heads < n_heads keys = repeat_kv( keys, self.n_rep ) # (bs, cache_len + seqlen, n_local_heads, head_dim) values = repeat_kv( values, self.n_rep ) # (bs, cache_len + seqlen, n_local_heads, head_dim) xq = tf.transpose(xq, (0, 2, 1, 3)) # (bs, n_local_heads, seqlen, head_dim) keys = tf.transpose(keys, (0, 2, 1, 3)) # (bs, n_local_heads, cache_len + seqlen, head_dim) values = tf.transpose(values, (0, 2, 1, 3) ) # (bs, n_local_heads, cache_len + seqlen, head_dim) scores = tf.matmul(xq, tf.transpose(keys, (0, 1, 3, 2))) / math.sqrt(self.head_dim) if mask is not None: scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen) scores = tf.cast(tf.nn.softmax(tf.cast(scores, 'float32')), xq.dtype) output = tf.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim) output = tf.reshape(tf.transpose(output, (0, 2, 1, 3)), (bsz, seqlen, -1)) return self.wo(output) class FeedForward: def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ffn_dim_multiplier: Optional[float], ): hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = Dense( hidden_dim, use_bias=False ) self.w2 = Dense( dim, use_bias=False ) self.w3 = Dense( hidden_dim, use_bias=False ) def __call__(self, x): return self.w2(tf.nn.silu(self.w1(x)) * self.w3(x)) class TransformerBlock: def __init__(self, layer_id: int, args: ModelArgs): self.n_heads = args.n_heads self.dim = args.dim self.head_dim = args.dim // args.n_heads self.attention = Attention(args) self.feed_forward = FeedForward( dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of, ffn_dim_multiplier=args.ffn_dim_multiplier, ) self.layer_id = layer_id self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) def __call__( self, x, start_pos, freqs_cis, mask, ): h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask) out = h + self.feed_forward(self.ffn_norm(h)) return out class Llama3(Model): def __init__(self, params: ModelArgs): self.params = params self.vocab_size = params.vocab_size self.n_layers = params.n_layers self.tok_embeddings = Embedding( params.vocab_size, params.dim ) self.layers_ = [] for layer_id in range(params.n_layers): self.layers_.append(TransformerBlock(layer_id, params)) self.norm = RMSNorm(params.dim, eps=params.norm_eps) self.output_ = Dense( params.vocab_size, use_bias=False ) self.freqs_cis = precompute_freqs_cis( params.dim // params.n_heads, params.max_seq_len * 2, params.rope_theta, ) def __call__(self, tokens, start_pos: int): _bsz, seqlen = tokens.shape h = self.tok_embeddings(tokens) self.freqs_cis = self.freqs_cis freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] mask = None if seqlen > 1: mask = tf.fill([seqlen, seqlen], float("-inf")) mask = tf.linalg.band_part(mask, 0, -1) mask = mask - tf.linalg.band_part(mask, 0, 0) # When performing key-value caching, we compute the attention scores # only for the new sequence. Thus, the matrix of scores is of size # (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for # j > cache_len + i, since row i corresponds to token cache_len + i. mask = tf.linalg.set_diag(mask, tf.zeros(seqlen)) mask = tf.cast(mask, h.dtype) for layer in self.layers_: h = layer(h, start_pos, freqs_cis, mask) h = self.norm(h) output = tf.cast(self.output_(h), 'float32') return output