NothingMuch commited on
Commit
071c549
·
verified ·
1 Parent(s): ce2e3cf

Upload 12 files

Browse files
1_Pooling/1_Pooling_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,468 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:40906
8
+ - loss:MatryoshkaLoss
9
+ - loss:MegaBatchMarginLoss
10
+ widget:
11
+ - source_sentence: One of three laminate structures that form the spindle pole body;
12
+ the inner plaque is in the nucleus.
13
+ sentences:
14
+ - maturation of SSU-rRNA from tetracistronic rRNA transcript (SSU-rRNA, 5.8S rRNA,
15
+ 2S rRNA, LSU-rRNA)
16
+ - leukotriene receptor activity
17
+ - inner plaque of spindle pole body
18
+ - source_sentence: The covalent attachment of a myristoyl group to the N-terminal
19
+ amino acid residue of a protein.
20
+ sentences:
21
+ - MHC class I protein complex assembly
22
+ - N-terminal protein myristoylation
23
+ - neurotrophin receptor activity
24
+ - source_sentence: The inner, i.e. lumen-facing, lipid bilayer of the plastid envelope;
25
+ also faces the plastid stroma.
26
+ sentences:
27
+ - plastid inner membrane
28
+ - neuron migration involved in retrograde extension
29
+ - stomatal complex morphogenesis
30
+ - source_sentence: Initiation of a region of tissue in a plant that is composed of
31
+ one or more undifferentiated cells capable of undergoing mitosis and differentiation,
32
+ thereby effecting growth and development of a plant by giving rise to more meristem
33
+ or specialized tissue.
34
+ sentences:
35
+ - meristem initiation
36
+ - polytene chromosome
37
+ - cardiac ventricle development
38
+ - source_sentence: The sex chromosome present in both sexes of species in which the
39
+ male is the heterogametic sex. Two copies of the X chromosome are present in each
40
+ somatic cell of females and one copy is present in males.
41
+ sentences:
42
+ - establishment of cell polarity involved in gastrulation cell migration
43
+ - X chromosome
44
+ - somatic diversification of immune receptors by N region addition
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - src2trg_accuracy
49
+ - trg2src_accuracy
50
+ - mean_accuracy
51
+ model-index:
52
+ - name: SentenceTransformer
53
+ results:
54
+ - task:
55
+ type: translation
56
+ name: Translation
57
+ dataset:
58
+ name: Unknown
59
+ type: unknown
60
+ metrics:
61
+ - type: src2trg_accuracy
62
+ value: 0.00015186028853454822
63
+ name: Src2Trg Accuracy
64
+ - type: trg2src_accuracy
65
+ value: 0.0
66
+ name: Trg2Src Accuracy
67
+ - type: mean_accuracy
68
+ value: 7.593014426727411e-05
69
+ name: Mean Accuracy
70
+ ---
71
+
72
+ # SentenceTransformer
73
+
74
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the parquet dataset. It maps sentences & paragraphs to a 128-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
75
+
76
+ ## Model Details
77
+
78
+ ### Model Description
79
+ - **Model Type:** Sentence Transformer
80
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
81
+ - **Maximum Sequence Length:** 512 tokens
82
+ - **Output Dimensionality:** 128 dimensions
83
+ - **Similarity Function:** Cosine Similarity
84
+ - **Training Dataset:**
85
+ - parquet
86
+ <!-- - **Language:** Unknown -->
87
+ <!-- - **License:** Unknown -->
88
+
89
+ ### Model Sources
90
+
91
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
92
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
93
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
94
+
95
+ ### Full Model Architecture
96
+
97
+ ```
98
+ SentenceTransformer(
99
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
100
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
101
+ (2): Normalize()
102
+ )
103
+ ```
104
+
105
+ ## Usage
106
+
107
+ ### Direct Usage (Sentence Transformers)
108
+
109
+ First install the Sentence Transformers library:
110
+
111
+ ```bash
112
+ pip install -U sentence-transformers
113
+ ```
114
+
115
+ Then you can load this model and run inference.
116
+ ```python
117
+ from sentence_transformers import SentenceTransformer
118
+
119
+ # Download from the 🤗 Hub
120
+ model = SentenceTransformer("GO-Term-Embeddings")
121
+ # Run inference
122
+ sentences = [
123
+ 'The sex chromosome present in both sexes of species in which the male is the heterogametic sex. Two copies of the X chromosome are present in each somatic cell of females and one copy is present in males.',
124
+ 'X chromosome',
125
+ 'somatic diversification of immune receptors by N region addition',
126
+ ]
127
+ embeddings = model.encode(sentences)
128
+ print(embeddings.shape)
129
+ # [3, 128]
130
+
131
+ # Get the similarity scores for the embeddings
132
+ similarities = model.similarity(embeddings, embeddings)
133
+ print(similarities.shape)
134
+ # [3, 3]
135
+ ```
136
+
137
+ <!--
138
+ ### Direct Usage (Transformers)
139
+
140
+ <details><summary>Click to see the direct usage in Transformers</summary>
141
+
142
+ </details>
143
+ -->
144
+
145
+ <!--
146
+ ### Downstream Usage (Sentence Transformers)
147
+
148
+ You can finetune this model on your own dataset.
149
+
150
+ <details><summary>Click to expand</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Out-of-Scope Use
157
+
158
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
159
+ -->
160
+
161
+ ## Evaluation
162
+
163
+ ### Metrics
164
+
165
+ #### Translation
166
+
167
+ * Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
168
+
169
+ | Metric | Value |
170
+ |:------------------|:-----------|
171
+ | src2trg_accuracy | 0.0002 |
172
+ | trg2src_accuracy | 0.0 |
173
+ | **mean_accuracy** | **0.0001** |
174
+
175
+ <!--
176
+ ## Bias, Risks and Limitations
177
+
178
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
179
+ -->
180
+
181
+ <!--
182
+ ### Recommendations
183
+
184
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
185
+ -->
186
+
187
+ ## Training Details
188
+
189
+ ### Training Dataset
190
+
191
+ #### parquet
192
+
193
+ * Dataset: parquet
194
+ * Size: 40,906 training samples
195
+ * Columns: <code>anchor</code> and <code>positive</code>
196
+ * Approximate statistics based on the first 1000 samples:
197
+ | | anchor | positive |
198
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
199
+ | type | string | string |
200
+ | details | <ul><li>min: 8 tokens</li><li>mean: 43.8 tokens</li><li>max: 193 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.19 tokens</li><li>max: 38 tokens</li></ul> |
201
+ * Samples:
202
+ | anchor | positive |
203
+ |:------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------|
204
+ | <code>Catalysis of the transfer of a mannose residue to an oligosaccharide, forming an alpha-(1->6) linkage.</code> | <code>1,6-alpha-mannosyltransferase activity</code> |
205
+ | <code>Catalysis of the hydrolysis of ester linkages within a single-stranded deoxyribonucleic acid molecule by creating internal breaks.</code> | <code>single-stranded DNA specific endodeoxyribonuclease activity</code> |
206
+ | <code>Catalysis of the hydrolysis of ester linkages within a single-stranded deoxyribonucleic acid molecule by creating internal breaks.</code> | <code>ssDNA-specific endodeoxyribonuclease activity</code> |
207
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
208
+ ```json
209
+ {
210
+ "loss": "MegaBatchMarginLoss",
211
+ "matryoshka_dims": [
212
+ 64,
213
+ 32
214
+ ],
215
+ "matryoshka_weights": [
216
+ 1,
217
+ 1
218
+ ],
219
+ "n_dims_per_step": -1
220
+ }
221
+ ```
222
+
223
+ ### Evaluation Dataset
224
+
225
+ #### parquet
226
+
227
+ * Dataset: parquet
228
+ * Size: 6,585 evaluation samples
229
+ * Columns: <code>anchor</code> and <code>positive</code>
230
+ * Approximate statistics based on the first 1000 samples:
231
+ | | anchor | positive |
232
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
233
+ | type | string | string |
234
+ | details | <ul><li>min: 7 tokens</li><li>mean: 42.75 tokens</li><li>max: 296 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.62 tokens</li><li>max: 36 tokens</li></ul> |
235
+ * Samples:
236
+ | anchor | positive |
237
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------|
238
+ | <code>The maintenance of the structure and integrity of the mitochondrial genome; includes replication and segregation of the mitochondrial chromosome.</code> | <code>mitochondrial genome maintenance</code> |
239
+ | <code>The repair of single strand breaks in DNA. Repair of such breaks is mediated by the same enzyme systems as are used in base excision repair.</code> | <code>single strand break repair</code> |
240
+ | <code>Any process that modulates the frequency, rate or extent of DNA recombination, a DNA metabolic process in which a new genotype is formed by reassortment of genes resulting in gene combinations different from those that were present in the parents.</code> | <code>regulation of DNA recombination</code> |
241
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
242
+ ```json
243
+ {
244
+ "loss": "MegaBatchMarginLoss",
245
+ "matryoshka_dims": [
246
+ 64,
247
+ 32
248
+ ],
249
+ "matryoshka_weights": [
250
+ 1,
251
+ 1
252
+ ],
253
+ "n_dims_per_step": -1
254
+ }
255
+ ```
256
+
257
+ ### Training Hyperparameters
258
+ #### Non-Default Hyperparameters
259
+
260
+ - `per_device_train_batch_size`: 10
261
+ - `per_device_eval_batch_size`: 5
262
+ - `torch_empty_cache_steps`: 200
263
+ - `learning_rate`: 0.2
264
+ - `weight_decay`: 0.001
265
+ - `num_train_epochs`: 1
266
+ - `warmup_ratio`: 0.25
267
+ - `seed`: 25
268
+ - `batch_sampler`: no_duplicates
269
+
270
+ #### All Hyperparameters
271
+ <details><summary>Click to expand</summary>
272
+
273
+ - `overwrite_output_dir`: False
274
+ - `do_predict`: False
275
+ - `eval_strategy`: no
276
+ - `prediction_loss_only`: True
277
+ - `per_device_train_batch_size`: 10
278
+ - `per_device_eval_batch_size`: 5
279
+ - `per_gpu_train_batch_size`: None
280
+ - `per_gpu_eval_batch_size`: None
281
+ - `gradient_accumulation_steps`: 1
282
+ - `eval_accumulation_steps`: None
283
+ - `torch_empty_cache_steps`: 200
284
+ - `learning_rate`: 0.2
285
+ - `weight_decay`: 0.001
286
+ - `adam_beta1`: 0.9
287
+ - `adam_beta2`: 0.999
288
+ - `adam_epsilon`: 1e-08
289
+ - `max_grad_norm`: 1.0
290
+ - `num_train_epochs`: 1
291
+ - `max_steps`: -1
292
+ - `lr_scheduler_type`: linear
293
+ - `lr_scheduler_kwargs`: {}
294
+ - `warmup_ratio`: 0.25
295
+ - `warmup_steps`: 0
296
+ - `log_level`: passive
297
+ - `log_level_replica`: warning
298
+ - `log_on_each_node`: True
299
+ - `logging_nan_inf_filter`: True
300
+ - `save_safetensors`: True
301
+ - `save_on_each_node`: False
302
+ - `save_only_model`: False
303
+ - `restore_callback_states_from_checkpoint`: False
304
+ - `no_cuda`: False
305
+ - `use_cpu`: False
306
+ - `use_mps_device`: False
307
+ - `seed`: 25
308
+ - `data_seed`: None
309
+ - `jit_mode_eval`: False
310
+ - `use_ipex`: False
311
+ - `bf16`: False
312
+ - `fp16`: False
313
+ - `fp16_opt_level`: O1
314
+ - `half_precision_backend`: auto
315
+ - `bf16_full_eval`: False
316
+ - `fp16_full_eval`: False
317
+ - `tf32`: None
318
+ - `local_rank`: 0
319
+ - `ddp_backend`: None
320
+ - `tpu_num_cores`: None
321
+ - `tpu_metrics_debug`: False
322
+ - `debug`: []
323
+ - `dataloader_drop_last`: False
324
+ - `dataloader_num_workers`: 0
325
+ - `dataloader_prefetch_factor`: None
326
+ - `past_index`: -1
327
+ - `disable_tqdm`: False
328
+ - `remove_unused_columns`: True
329
+ - `label_names`: None
330
+ - `load_best_model_at_end`: False
331
+ - `ignore_data_skip`: False
332
+ - `fsdp`: []
333
+ - `fsdp_min_num_params`: 0
334
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
335
+ - `fsdp_transformer_layer_cls_to_wrap`: None
336
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
337
+ - `deepspeed`: None
338
+ - `label_smoothing_factor`: 0.0
339
+ - `optim`: adamw_torch
340
+ - `optim_args`: None
341
+ - `adafactor`: False
342
+ - `group_by_length`: False
343
+ - `length_column_name`: length
344
+ - `ddp_find_unused_parameters`: None
345
+ - `ddp_bucket_cap_mb`: None
346
+ - `ddp_broadcast_buffers`: False
347
+ - `dataloader_pin_memory`: True
348
+ - `dataloader_persistent_workers`: False
349
+ - `skip_memory_metrics`: True
350
+ - `use_legacy_prediction_loop`: False
351
+ - `push_to_hub`: False
352
+ - `resume_from_checkpoint`: None
353
+ - `hub_model_id`: None
354
+ - `hub_strategy`: every_save
355
+ - `hub_private_repo`: None
356
+ - `hub_always_push`: False
357
+ - `gradient_checkpointing`: False
358
+ - `gradient_checkpointing_kwargs`: None
359
+ - `include_inputs_for_metrics`: False
360
+ - `include_for_metrics`: []
361
+ - `eval_do_concat_batches`: True
362
+ - `fp16_backend`: auto
363
+ - `push_to_hub_model_id`: None
364
+ - `push_to_hub_organization`: None
365
+ - `mp_parameters`:
366
+ - `auto_find_batch_size`: False
367
+ - `full_determinism`: False
368
+ - `torchdynamo`: None
369
+ - `ray_scope`: last
370
+ - `ddp_timeout`: 1800
371
+ - `torch_compile`: False
372
+ - `torch_compile_backend`: None
373
+ - `torch_compile_mode`: None
374
+ - `dispatch_batches`: None
375
+ - `split_batches`: None
376
+ - `include_tokens_per_second`: False
377
+ - `include_num_input_tokens_seen`: False
378
+ - `neftune_noise_alpha`: None
379
+ - `optim_target_modules`: None
380
+ - `batch_eval_metrics`: False
381
+ - `eval_on_start`: False
382
+ - `use_liger_kernel`: False
383
+ - `eval_use_gather_object`: False
384
+ - `average_tokens_across_devices`: False
385
+ - `prompts`: None
386
+ - `batch_sampler`: no_duplicates
387
+ - `multi_dataset_batch_sampler`: proportional
388
+
389
+ </details>
390
+
391
+ ### Training Logs
392
+ | Epoch | Step | mean_accuracy |
393
+ |:-----:|:----:|:-------------:|
394
+ | 0 | 0 | 0.0001 |
395
+
396
+
397
+ ### Framework Versions
398
+ - Python: 3.12.8
399
+ - Sentence Transformers: 3.3.1
400
+ - Transformers: 4.47.0
401
+ - PyTorch: 2.5.1
402
+ - Accelerate: 1.2.0
403
+ - Datasets: 3.1.0
404
+ - Tokenizers: 0.21.0
405
+
406
+ ## Citation
407
+
408
+ ### BibTeX
409
+
410
+ #### Sentence Transformers
411
+ ```bibtex
412
+ @inproceedings{reimers-2019-sentence-bert,
413
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
414
+ author = "Reimers, Nils and Gurevych, Iryna",
415
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
416
+ month = "11",
417
+ year = "2019",
418
+ publisher = "Association for Computational Linguistics",
419
+ url = "https://arxiv.org/abs/1908.10084",
420
+ }
421
+ ```
422
+
423
+ #### MatryoshkaLoss
424
+ ```bibtex
425
+ @misc{kusupati2024matryoshka,
426
+ title={Matryoshka Representation Learning},
427
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
428
+ year={2024},
429
+ eprint={2205.13147},
430
+ archivePrefix={arXiv},
431
+ primaryClass={cs.LG}
432
+ }
433
+ ```
434
+
435
+ #### MegaBatchMarginLoss
436
+ ```bibtex
437
+ @inproceedings{wieting-gimpel-2018-paranmt,
438
+ title = "{P}ara{NMT}-50{M}: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations",
439
+ author = "Wieting, John and Gimpel, Kevin",
440
+ editor = "Gurevych, Iryna and Miyao, Yusuke",
441
+ booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
442
+ month = jul,
443
+ year = "2018",
444
+ address = "Melbourne, Australia",
445
+ publisher = "Association for Computational Linguistics",
446
+ url = "https://aclanthology.org/P18-1042",
447
+ doi = "10.18653/v1/P18-1042",
448
+ pages = "451--462",
449
+ }
450
+ ```
451
+
452
+ <!--
453
+ ## Glossary
454
+
455
+ *Clearly define terms in order to be accessible across audiences.*
456
+ -->
457
+
458
+ <!--
459
+ ## Model Card Authors
460
+
461
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
462
+ -->
463
+
464
+ <!--
465
+ ## Model Card Contact
466
+
467
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
468
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/adam/Downloads/GO-Term-Embeddings",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float16",
22
+ "transformers_version": "4.47.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e532079c970b013ab6b2f3e9bce55d8478d09009c47f0ba2f794c05484a8ab25
3
+ size 217805359
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff