File size: 1,416 Bytes
5169b80 2010c83 2b1c7b3 2010c83 2b1c7b3 2010c83 5169b80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
"""
OLMo configuration
"""
from transformers import AutoConfig, PretrainedConfig
from transformers.utils import logging
from .config import ModelConfig
from .aliases import PathOrStr
from .beam_search import Sampler
from .exceptions import OLMoError
from .initialization import ModuleType
from .optim import Optimizer
from .util import StrEnum
from .safetensors_util import STKey
from .torch_util import seed_all
logger = logging.get_logger(__name__)
class OLMoConfig(PretrainedConfig):
model_type = "olmo"
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
def __init__(self, use_cache: bool = False, **kwargs):
model_config = ModelConfig()
all_kwargs = model_config.asdict()
all_kwargs.update(kwargs)
all_kwargs.update({"use_cache": use_cache})
all_kwargs.update(
{
"architectures": all_kwargs.get("architectures", ["OLMoModelForCausalLM"])
or ["OLMoModelForCausalLM"]
}
)
super().__init__(**all_kwargs)
@property
def num_attention_heads(self):
return self.n_heads
@property
def num_hidden_layers(self):
return self.n_layers
@property
def hidden_size(self):
return self.d_model
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
AutoConfig.register("olmo", OLMoConfig)
|