Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- allenai/dolma
|
5 |
+
---
|
6 |
+
# OLMo-Bitnet-1B
|
7 |
+
|
8 |
+
OLMo-Bitnet-1B is a 1B parameter model trained using the method described in [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/abs/2402.17764).
|
9 |
+
The result of this is that all of the parameter weights take only the values -1, 0, or 1.
|
10 |
+
|
11 |
+
It was trained on a 60B subset of the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset, so it is merely a research proof-of-concept to test out the methodolgy.
|
12 |
+
|
13 |
+
A separate training run was run with the exact same hyperparameters, but using standard fp16 weights.
|
14 |
+
The comparison can be found in [this wandb report](https://api.wandb.ai/links/emozilla/evltqiv7).
|
15 |
+
|
16 |
+
Sample inference code
|
17 |
+
```python
|
18 |
+
import torch
|
19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextStreamer
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("NousResearch/OLMo-Bitnet-1B")
|
22 |
+
model = AutoModelForCausalLM.from_pretrained("NousResearch/OLMo-Bitnet-1B",
|
23 |
+
torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
24 |
+
|
25 |
+
streamer = TextStreamer(tokenizer)
|
26 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id,
|
27 |
+
temperature=0.8, repetition_penalty=1.1, do_sample=True,streamer=streamer)
|
28 |
+
pipe("The capitol of Paris is", max_new_tokens=256)
|
29 |
+
```
|
30 |
+
|
31 |
+
Training was performed using [OLMo](https://github.com/allenai/OLMo).
|