--- base_model: mistralai/Mistral-7B-v0.1 tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation model-index: - name: Thestral-0.1 results: [] license: apache-2.0 language: - en --- # Thestral 0.1 Thestral is Mistral Fine-tune. The model is a QLoRA version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca). This model is finetuned using `1xH100` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Open-Orca/SlimOrca type: sharegpt dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out_2 adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 128 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: slim_orca wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

GPT-4All Benchmark Set | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |-------------|------:|------|------|--------|-----:|---|-----:| |winogrande | 1|none |None |acc |0.7498|± |0.0122| |piqa | 1|none |None |acc |0.8172|± |0.0090| | | |none |None |acc_norm|0.8286|± |0.0088| |openbookqa | 1|none |None |acc |0.3380|± |0.0212| | | |none |None |acc_norm|0.4420|± |0.0222| |hellaswag | 1|none |None |acc |0.6254|± |0.0048| | | |none |None |acc_norm|0.8061|± |0.0039| |boolq | 2|none |None |acc |0.8740|± |0.0058| |arc_easy | 1|none |None |acc |0.8199|± |0.0079| | | |none |None |acc_norm|0.7891|± |0.0084| |arc_challenge| 1|none |None |acc |0.5145|± |0.0146| | | |none |None |acc_norm|0.5461|± |0.0145| Average: 71.93 # 🤖 Additional information about training This model is fine-tuned for 1.0 epoch.
Loss graph ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60ca32d2e7bc4b029af088a0/bZdS1tIIJ4tWL_pTM4qeQ.png)

Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository we used to make this model. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)