Nuwaisir Rabi
commited on
Commit
โข
4281bc1
1
Parent(s):
4246c95
Upload run_ui.ipynb
Browse files- run_ui.ipynb +278 -0
run_ui.ipynb
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"!pip install sounddevice scipy torch transformers lang_trans nltk tqdm pyquran"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 1,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"from os import path\n",
|
19 |
+
"import sounddevice as sd\n",
|
20 |
+
"import scipy.io.wavfile as wav\n",
|
21 |
+
"import torch\n",
|
22 |
+
"from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor\n",
|
23 |
+
"from lang_trans.arabic import buckwalter\n",
|
24 |
+
"from nltk import edit_distance\n",
|
25 |
+
"from tqdm import tqdm\n",
|
26 |
+
"import pyquran as q"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": 2,
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [],
|
34 |
+
"source": [
|
35 |
+
"def record():\n",
|
36 |
+
" fs = 16000 # Sample rate\n",
|
37 |
+
" seconds = 5 # Duration of recording\n",
|
38 |
+
" print(\"Recording...\")\n",
|
39 |
+
" myrecording = sd.rec(int(seconds * fs), samplerate=fs, channels=1)\n",
|
40 |
+
" sd.wait() # Wait until recording is finished\n",
|
41 |
+
" print(\"Finished recording.\")\n",
|
42 |
+
" return fs , myrecording[:,0]"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 3,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"def load_Quran_fine_tuned_elgeish_xlsr_53_model_and_processor():\n",
|
52 |
+
" global loaded_model, loaded_processor\n",
|
53 |
+
" loaded_model = Wav2Vec2ForCTC.from_pretrained(\"Nuwaisir/Quran_speech_recognizer\").eval()\n",
|
54 |
+
" loaded_processor = Wav2Vec2Processor.from_pretrained(\"Nuwaisir/Quran_speech_recognizer\")"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"cell_type": "code",
|
59 |
+
"execution_count": 4,
|
60 |
+
"metadata": {},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"def load_elgeish_xlsr_53_model_and_processor():\n",
|
64 |
+
" global loaded_model, loaded_processor\n",
|
65 |
+
" loaded_model = Wav2Vec2ForCTC.from_pretrained(\"elgeish/wav2vec2-large-xlsr-53-arabic\").eval()\n",
|
66 |
+
" loaded_processor = Wav2Vec2Processor.from_pretrained(\"elgeish/wav2vec2-large-xlsr-53-arabic\")"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 5,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"def predict(single):\n",
|
76 |
+
" inputs = loaded_processor(single[\"speech\"], sampling_rate=16000, return_tensors=\"pt\", padding=True)\n",
|
77 |
+
" with torch.no_grad():\n",
|
78 |
+
" predicted = torch.argmax(loaded_model(inputs.input_values).logits, dim=-1)\n",
|
79 |
+
" predicted[predicted == -100] = loaded_processor.tokenizer.pad_token_id # see fine-tuning script\n",
|
80 |
+
" pred_1 = loaded_processor.tokenizer.batch_decode(predicted)[0]\n",
|
81 |
+
" single[\"predicted\"] = buckwalter.untrans(pred_1)\n",
|
82 |
+
" return single"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 6,
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"def last_para_str(taskeel=False):\n",
|
92 |
+
" quran_string = ''\n",
|
93 |
+
" for i in range (78, 115):\n",
|
94 |
+
" quran_string += ' '.join(q.quran.get_sura(i, with_tashkeel=taskeel,basmalah=False))\n",
|
95 |
+
" quran_string += ' '\n",
|
96 |
+
" return quran_string\n",
|
97 |
+
"\n",
|
98 |
+
"def find_match_2(q_str, s, spaces, threshhold = 10):\n",
|
99 |
+
" len_q = len(q_str)\n",
|
100 |
+
" len_s = len(s)\n",
|
101 |
+
" min_dist = 1000000000\n",
|
102 |
+
" min_dist_pos = []\n",
|
103 |
+
" for i in tqdm(spaces):\n",
|
104 |
+
" j = i+1\n",
|
105 |
+
" k = j + len_s + len_s // 3\n",
|
106 |
+
" if k > len_q:\n",
|
107 |
+
" break\n",
|
108 |
+
" dist = edit_distance(q_str[j:k],s)\n",
|
109 |
+
" if dist < min_dist:\n",
|
110 |
+
" min_dist = dist\n",
|
111 |
+
" min_dist_pos = [j]\n",
|
112 |
+
" elif dist == min_dist:\n",
|
113 |
+
" min_dist_pos.append(j)\n",
|
114 |
+
" return min_dist, min_dist_pos\n",
|
115 |
+
"\n",
|
116 |
+
"def find_all_index(s, ch):\n",
|
117 |
+
" return [i for i, ltr in enumerate(s) if ltr == ch]"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": 7,
|
123 |
+
"metadata": {},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"last_para = last_para_str(taskeel=True)\n",
|
127 |
+
"last_para_spaces = find_all_index(last_para,' ')\n",
|
128 |
+
"last_para_spaces.insert(0, -1)"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 13,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"def pipeline():\n",
|
138 |
+
" fs, myrecording = record()\n",
|
139 |
+
" single_example = {\n",
|
140 |
+
" \"speech\": myrecording,\n",
|
141 |
+
" \"sampling_rate\": fs,\n",
|
142 |
+
" }\n",
|
143 |
+
" predicted = predict(single_example)\n",
|
144 |
+
" print(predicted[\"predicted\"])\n",
|
145 |
+
" dist,poses = find_match_2(last_para, predicted['predicted'], spaces=last_para_spaces)\n",
|
146 |
+
" print(\"distance:\",dist)\n",
|
147 |
+
" print(\"number of matches:\", len(poses))\n",
|
148 |
+
" for i in poses:\n",
|
149 |
+
" print(last_para[i:i+200],'\\n')\n"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "markdown",
|
154 |
+
"metadata": {},
|
155 |
+
"source": [
|
156 |
+
"### Load the elgeish_xlsr_53 model"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": 9,
|
162 |
+
"metadata": {},
|
163 |
+
"outputs": [],
|
164 |
+
"source": [
|
165 |
+
"# load_elgeish_xlsr_53_model_and_processor()"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "markdown",
|
170 |
+
"metadata": {},
|
171 |
+
"source": [
|
172 |
+
"### Load Quran fine-tuned elgeish_xlsr_53 model"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 10,
|
178 |
+
"metadata": {},
|
179 |
+
"outputs": [],
|
180 |
+
"source": [
|
181 |
+
"load_Quran_fine_tuned_elgeish_xlsr_53_model_and_processor()"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 14,
|
187 |
+
"metadata": {},
|
188 |
+
"outputs": [
|
189 |
+
{
|
190 |
+
"name": "stdout",
|
191 |
+
"output_type": "stream",
|
192 |
+
"text": [
|
193 |
+
"Recording...\n",
|
194 |
+
"Finished recording.\n",
|
195 |
+
"ููุฅูููุง ูู ููุฑูุงูุดู ุฅูููุง ููููู\n"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"name": "stderr",
|
200 |
+
"output_type": "stream",
|
201 |
+
"text": [
|
202 |
+
"100%|โโโโโโโโโโ| 2304/2309 [00:03<00:00, 587.76it/s]"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"name": "stdout",
|
207 |
+
"output_type": "stream",
|
208 |
+
"text": [
|
209 |
+
"distance: 23\n",
|
210 |
+
"number of matches: 1\n",
|
211 |
+
"ููุฅูููููู ููุฑูููุดู ุฅูููููููู
ู ุฑูุญูููุฉู ุงูุดููุชูุงุกู ููุงูุตูููููู ููููููุนูุจูุฏููุง ุฑูุจูู ููุฐูุง ุงููุจูููุชู ุงูููุฐูู ุฃูุทูุนูู
ูููู
ู
ููู ุฌููุนู ููุกูุงู
ูููููู
ู
ูููู ุฎููููู ุฃูุฑูุกูููุชู ุงูููุฐูู ููููุฐููุจู ุจูุงูุฏููููู ููุฐู \n",
|
212 |
+
"\n"
|
213 |
+
]
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"name": "stderr",
|
217 |
+
"output_type": "stream",
|
218 |
+
"text": [
|
219 |
+
"\n"
|
220 |
+
]
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"source": [
|
224 |
+
"# Recite after running this cell. The first 5 seconds will capture your audio\n",
|
225 |
+
"pipeline()"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "markdown",
|
230 |
+
"metadata": {},
|
231 |
+
"source": []
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": null,
|
236 |
+
"metadata": {},
|
237 |
+
"outputs": [],
|
238 |
+
"source": []
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "markdown",
|
242 |
+
"metadata": {},
|
243 |
+
"source": []
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"cell_type": "code",
|
247 |
+
"execution_count": null,
|
248 |
+
"metadata": {},
|
249 |
+
"outputs": [],
|
250 |
+
"source": []
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"metadata": {
|
254 |
+
"interpreter": {
|
255 |
+
"hash": "35541def04ad193058c9b5b3afd24560c7277f209ee76d36789dee7d6c5bcde6"
|
256 |
+
},
|
257 |
+
"kernelspec": {
|
258 |
+
"display_name": "Python 3.10.2 64-bit",
|
259 |
+
"language": "python",
|
260 |
+
"name": "python3"
|
261 |
+
},
|
262 |
+
"language_info": {
|
263 |
+
"codemirror_mode": {
|
264 |
+
"name": "ipython",
|
265 |
+
"version": 3
|
266 |
+
},
|
267 |
+
"file_extension": ".py",
|
268 |
+
"mimetype": "text/x-python",
|
269 |
+
"name": "python",
|
270 |
+
"nbconvert_exporter": "python",
|
271 |
+
"pygments_lexer": "ipython3",
|
272 |
+
"version": "3.8.10"
|
273 |
+
},
|
274 |
+
"orig_nbformat": 4
|
275 |
+
},
|
276 |
+
"nbformat": 4,
|
277 |
+
"nbformat_minor": 2
|
278 |
+
}
|