{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4cd75f1690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653022530.4998066, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOmxD17irW6cNQTugArYLXLLJ44E6vFNAAAgD8AAIA/7e5XPteVRTwL7ti7O7fBuejiyD19/LC6AACAPwAAgD9dPIo+cTZwuz6fJDukWAe4Y3CuvCbuQroAAIA/AACAP9M8Jj49AUS7DiuCPMdYzrmhG6e8fmivugAAgD8AAIA/ZqH7vJqWrT/rsky+fJOyvqsnkbz5/hy9AAAAAAAAAACzTR69j6ZgulizajnLRlk1lSObuj75hLgAAIA/AACAP80RgT1cUze6SBp5O7FuADY598i6rGWOugAAgD8AAIA/QLiCPmo0Lr24VKa5eo+HOBP0lb711d44AACAPwAAgD+TAy4+e7T+Oyrt/7vK3gK6usaJPW62+roAAIA/AACAPyAejz6uh7m8PrlYPDElUrqiqCK+egkmuwAAgD8AAIA/mldOPSl4I7o1HFO65Mg7Nu12IzmudHc5AACAPwAAgD8t062+V1k+P4ScOb6gCWq+mXxbvv2Th7wAAAAAAAAAAJoN77sUIKK6aYsQO40bFbbmJ6y6JlgmugAAgD8AAIA/zapVvZ8Z4D5mBYS8q9BevqGpCjzmFU69AAAAAAAAAACT5Fo+ijd5PJZ6uzqKgQc5aMAGPuj45rkAAIA/AACAP+D+Qz7Fh4Q8zoJduvITrbiEzhI+FsONOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5uWw+459XkCUhpRSlIwBbJRN6AOMAXSUR0CSgmfSx7iRdX2UKGgGaAloD0MIU5J1OLp+YUCUhpRSlGgVTegDaBZHQJKZKJSBK+V1fZQoaAZoCWgPQwiutmJ/2ShiQJSGlFKUaBVN6ANoFkdAkqWMWsRxtHV9lChoBmgJaA9DCBgjEoWWMWFAlIaUUpRoFU3oA2gWR0CSrTsHB1s+dX2UKGgGaAloD0MIk1URbjIUXUCUhpRSlGgVTegDaBZHQJKxzurp7kZ1fZQoaAZoCWgPQwjPTgZHSf9jQJSGlFKUaBVN6ANoFkdAkrpsZP2wmnV9lChoBmgJaA9DCOnVAKWhilhAlIaUUpRoFU3oA2gWR0CSwfJPZZjhdX2UKGgGaAloD0MIWyiZnFpjYkCUhpRSlGgVTegDaBZHQJLCMT7EYO51fZQoaAZoCWgPQwjaq4+HvrpcQJSGlFKUaBVN6ANoFkdAksLOLBKtgnV9lChoBmgJaA9DCKmgoupXaFpAlIaUUpRoFU3oA2gWR0CSw5BKL877dX2UKGgGaAloD0MIMCsU6X7GYkCUhpRSlGgVTegDaBZHQJLFf8FY+0R1fZQoaAZoCWgPQwhwmGiQghFdQJSGlFKUaBVN6ANoFkdAksx3tjTa03V9lChoBmgJaA9DCPgZFw4E2WJAlIaUUpRoFU3oA2gWR0CSzUt6X0GvdX2UKGgGaAloD0MI/Bhz1xL+YECUhpRSlGgVTegDaBZHQJLQ4274BWB1fZQoaAZoCWgPQwiAnDBhNJFlQJSGlFKUaBVN6ANoFkdAkt0Ki0v4/XV9lChoBmgJaA9DCPW4b7XOkGNAlIaUUpRoFU3oA2gWR0CS3WydWhh6dX2UKGgGaAloD0MIgQabOo8MXECUhpRSlGgVTegDaBZHQJLe3RVp9JB1fZQoaAZoCWgPQwjWNVoOdE9hQJSGlFKUaBVN6ANoFkdAkvStnbqQinV9lChoBmgJaA9DCNhGPNnNVFVAlIaUUpRoFU3oA2gWR0CTAOJNTLntdX2UKGgGaAloD0MI+S8QBEhQZECUhpRSlGgVTegDaBZHQJMIUOc2BJ91fZQoaAZoCWgPQwjuCKcFr+BgQJSGlFKUaBVN6ANoFkdAkwy36ZYxL3V9lChoBmgJaA9DCIUn9PqTel5AlIaUUpRoFU3oA2gWR0CTFWYQ8OkMdX2UKGgGaAloD0MIzo3pCUs8YUCUhpRSlGgVTegDaBZHQJMc186V+ql1fZQoaAZoCWgPQwhKsg5H1w1gQJSGlFKUaBVN6ANoFkdAkx0Ht0FKTXV9lChoBmgJaA9DCNTUsrW+x2RAlIaUUpRoFU3oA2gWR0CTHaIv8IiUdX2UKGgGaAloD0MIWeAruvW3X0CUhpRSlGgVTegDaBZHQJMeaJvYODt1fZQoaAZoCWgPQwhDc51G2i9iQJSGlFKUaBVN6ANoFkdAkyBEb5uZTnV9lChoBmgJaA9DCEMB28EId2JAlIaUUpRoFU3oA2gWR0CTJt9cKPXDdX2UKGgGaAloD0MIJLiRskWQVkCUhpRSlGgVTegDaBZHQJMnpsHjZL91fZQoaAZoCWgPQwgukKD4MVhkQJSGlFKUaBVN6ANoFkdAkyrLeQ+2VnV9lChoBmgJaA9DCD7nbtfLW2tAlIaUUpRoFU3KA2gWR0CTMwYSQHRkdX2UKGgGaAloD0MI6GZ/oNxVYECUhpRSlGgVTegDaBZHQJM1DYAbQ1J1fZQoaAZoCWgPQwiVK7zLRZlhQJSGlFKUaBVN6ANoFkdAk2ijye7L+3V9lChoBmgJaA9DCI/Ey9O55ENAlIaUUpRoFUv3aBZHQJN69N7Bwdd1fZQoaAZoCWgPQwilv5fCgwtjQJSGlFKUaBVN6ANoFkdAk3rw93bEgnV9lChoBmgJaA9DCMoYH2Yvc2dAlIaUUpRoFU3oA2gWR0CThLl18stkdX2UKGgGaAloD0MI8rG7QEkXTkCUhpRSlGgVTegDaBZHQJOK+wRoRI11fZQoaAZoCWgPQwi5bHTOz3tgQJSGlFKUaBVN6ANoFkdAk47Ugr6LwXV9lChoBmgJaA9DCGkZqfdUejlAlIaUUpRoFUv3aBZHQJOPVWLgn+h1fZQoaAZoCWgPQwigNT/+0v1iQJSGlFKUaBVN6ANoFkdAk5ZBEfDDTHV9lChoBmgJaA9DCLa8cr1tsmJAlIaUUpRoFU3oA2gWR0CTnM8eCCjDdX2UKGgGaAloD0MIIT8buW4DYkCUhpRSlGgVTegDaBZHQJOc9D6WPcV1fZQoaAZoCWgPQwig/x68drJZQJSGlFKUaBVN6ANoFkdAk516VMVUM3V9lChoBmgJaA9DCKwDIO7q3F5AlIaUUpRoFU3oA2gWR0CTni6FM7EHdX2UKGgGaAloD0MI/RAbLJwWX0CUhpRSlGgVTegDaBZHQJOf0SM98qp1fZQoaAZoCWgPQwhYxoZu9rBaQJSGlFKUaBVN6ANoFkdAk6Yy0jTrmnV9lChoBmgJaA9DCKxXkdEBb1dAlIaUUpRoFU3oA2gWR0CTpvqUeMhpdX2UKGgGaAloD0MICvMeZ5reYUCUhpRSlGgVTegDaBZHQJOqRcgQpWp1fZQoaAZoCWgPQwjRBfUt89RhQJSGlFKUaBVN6ANoFkdAk7KmOIZZS3V9lChoBmgJaA9DCONPVDasQGZAlIaUUpRoFU3oA2gWR0CTtloM8YAKdX2UKGgGaAloD0MInfS+8TXeZECUhpRSlGgVTegDaBZHQJPJ71e0G/x1fZQoaAZoCWgPQwg0LhwISdRjQJSGlFKUaBVN6ANoFkdAk9S+4LCvYHV9lChoBmgJaA9DCBr6J7hYOVxAlIaUUpRoFU3oA2gWR0CT265hScbzdX2UKGgGaAloD0MIJZS+EHLHYUCUhpRSlGgVTegDaBZHQJPgokgOjIt1fZQoaAZoCWgPQwgFUIwsmWxiQJSGlFKUaBVN6ANoFkdAk+FE1Q66rnV9lChoBmgJaA9DCMrFGFjHe11AlIaUUpRoFU3oA2gWR0CT6OR+z+m4dX2UKGgGaAloD0MIW0HTEqt0ZECUhpRSlGgVTegDaBZHQJPv3ZqVQhx1fZQoaAZoCWgPQwgOpItNq6RiQJSGlFKUaBVN6ANoFkdAk/AHjlxOtXV9lChoBmgJaA9DCHRiD+1jYldAlIaUUpRoFU3oA2gWR0CT8JagElmfdX2UKGgGaAloD0MIlX1XBH8QYkCUhpRSlGgVTegDaBZHQJPxUPSUkfN1fZQoaAZoCWgPQwh6qkNuhv5fQJSGlFKUaBVN6ANoFkdAk/L2wA2hqXV9lChoBmgJaA9DCNbG2AkvrV9AlIaUUpRoFU3oA2gWR0CT+VRzBAObdX2UKGgGaAloD0MIvAM8aeGaYUCUhpRSlGgVTegDaBZHQJP6FJXhfjV1fZQoaAZoCWgPQwgZ5ZmXw+lhQJSGlFKUaBVN6ANoFkdAk/0zEWIoE3V9lChoBmgJaA9DCIDyd++oV19AlIaUUpRoFU3oA2gWR0CUBe0iQkondX2UKGgGaAloD0MIR5OLMbCBYkCUhpRSlGgVTegDaBZHQJQJmzhP0qZ1fZQoaAZoCWgPQwgHXi135ihkQJSGlFKUaBVN6ANoFkdAlE6pnctXgnV9lChoBmgJaA9DCI8dVOK6R2ZAlIaUUpRoFU3oA2gWR0CUWcWykbgkdX2UKGgGaAloD0MIsVHWb6YFZUCUhpRSlGgVTegDaBZHQJRgygRK6Fx1fZQoaAZoCWgPQwg4MSQnE/dgQJSGlFKUaBVN6ANoFkdAlGUjkMkQgHV9lChoBmgJaA9DCBFwCFVqomFAlIaUUpRoFU3oA2gWR0CUZbauwHJLdX2UKGgGaAloD0MIIPDAAMLiYkCUhpRSlGgVTegDaBZHQJRtegyuZCx1fZQoaAZoCWgPQwiMTMCvESZjQJSGlFKUaBVN6ANoFkdAlHTR6fJ3gXV9lChoBmgJaA9DCA4V4/xNFl1AlIaUUpRoFU3oA2gWR0CUdQLLZBcBdX2UKGgGaAloD0MIHlGhurkSXkCUhpRSlGgVTegDaBZHQJR1leZ5Rj11fZQoaAZoCWgPQwh+AihGlr9cQJSGlFKUaBVN6ANoFkdAlHZOgYgq3HV9lChoBmgJaA9DCB2Txf3HBGNAlIaUUpRoFU3oA2gWR0CUeBKraM72dX2UKGgGaAloD0MITwXc83xeZECUhpRSlGgVTegDaBZHQJR+rqFAVwh1fZQoaAZoCWgPQwgQIEPHDq5iQJSGlFKUaBVN6ANoFkdAlH93yy2QXHV9lChoBmgJaA9DCNnO91PjKWVAlIaUUpRoFU3oA2gWR0CUgu7YChexdX2UKGgGaAloD0MI4ZnQJDGZY0CUhpRSlGgVTegDaBZHQJSLpGoaUA11fZQoaAZoCWgPQwidf7vsV2FjQJSGlFKUaBVN6ANoFkdAlI9GtQsPKHV9lChoBmgJaA9DCPkx5q4ls2NAlIaUUpRoFU3xAmgWR0CUnexsEaESdX2UKGgGaAloD0MItY0/UdmXXkCUhpRSlGgVTegDaBZHQJSitwo9cKR1fZQoaAZoCWgPQwg8hzJUxSFdQJSGlFKUaBVN6ANoFkdAlK0GcOLBK3V9lChoBmgJaA9DCCswZHWroVxAlIaUUpRoFU3oA2gWR0CUt91q33HrdX2UKGgGaAloD0MI/82LE18vXECUhpRSlGgVTegDaBZHQJS4a5f+jud1fZQoaAZoCWgPQwjt8UI6PPhiQJSGlFKUaBVN6ANoFkdAlL+dC7btZ3V9lChoBmgJaA9DCMr8o2/St2FAlIaUUpRoFU3oA2gWR0CUxhGBnSOSdX2UKGgGaAloD0MIFsPVAZCdZECUhpRSlGgVTegDaBZHQJTGM4bS7Xh1fZQoaAZoCWgPQwhdNGQ8yi5mQJSGlFKUaBVN6ANoFkdAlMbEIkZ75XV9lChoBmgJaA9DCBDJkGNr3mZAlIaUUpRoFU3oA2gWR0CUx2t1IRRNdX2UKGgGaAloD0MI9mG9USunYECUhpRSlGgVTegDaBZHQJTI/Ek0Jnh1fZQoaAZoCWgPQwhYOEnzx71iQJSGlFKUaBVN6ANoFkdAlM73xnWat3V9lChoBmgJaA9DCFRVaCAWX2RAlIaUUpRoFU3oA2gWR0CUz7VclgMMdX2UKGgGaAloD0MIpgpGJXW4akCUhpRSlGgVTU0BaBZHQJTQY1He7+V1fZQoaAZoCWgPQwjgSQuXVb9eQJSGlFKUaBVN6ANoFkdAlNK+4smOVHV9lChoBmgJaA9DCEaVYdyNHWBAlIaUUpRoFU3oA2gWR0CU2l53C9AYdX2UKGgGaAloD0MIpmPOM3Y0YECUhpRSlGgVTegDaBZHQJTdpVp9JBh1fZQoaAZoCWgPQwhz1TxH5L8+QJSGlFKUaBVL42gWR0CU4k2Hck+pdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 186, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 6, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}