OPEA
/

Safetensors
qwen2
4-bit precision
intel/auto-round
sys-lpot-val commited on
Commit
98b3137
·
1 Parent(s): c92fc0a

upload gptq format

Browse files
.gitattributes CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ added_tokens.json filter=lfs diff=lfs merge=lfs -text
37
+ config.json filter=lfs diff=lfs merge=lfs -text
38
+ generation_config.json filter=lfs diff=lfs merge=lfs -text
39
+ quantize_config.json filter=lfs diff=lfs merge=lfs -text
40
+ special_tokens_map.json filter=lfs diff=lfs merge=lfs -text
41
+ tokenizer_config.json filter=lfs diff=lfs merge=lfs -text
42
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
+ vocab.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,156 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - NeelNanda/pile-10k
5
+ ---
6
+
7
+ ## Model Details
8
+
9
+ This model is an int4 model with group_size 128 with quantized lm-head of [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) generated by [intel/auto-round](https://github.com/intel/auto-round), auto-round is needed to run this model
10
+
11
+ ## How To Use
12
+
13
+ ### INT4 Inference
14
+
15
+
16
+
17
+ ```python
18
+ ##git clone https://github.com/intel/auto-round.git
19
+ ##cd auto-round && pip install -vvv --no-build-isolation -e .
20
+ from auto_round import AutoHfQuantizer ##must import
21
+ import torch
22
+ from transformers import AutoModelForCausalLM,AutoTokenizer
23
+ quantized_model_dir = "OPEA/Qwen2.5-14B-Instruct-int4-inc"
24
+ tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir)
25
+
26
+ model = AutoModelForCausalLM.from_pretrained(
27
+ quantized_model_dir,
28
+ torch_dtype='auto',
29
+ device_map="auto",
30
+ )
31
+
32
+ ##import habana_frameworks.torch.core as htcore ## uncommnet it for HPU
33
+ ##import habana_frameworks.torch.hpu as hthpu ## uncommnet it for HPU
34
+ ##model = model.to(torch.bfloat16).to("hpu") ## uncommnet it for HPU
35
+
36
+ prompt = "There is a girl who likes adventure,"
37
+ messages = [
38
+ {"role": "system", "content": "You are a helpful assistant."},
39
+ {"role": "user", "content": prompt}
40
+ ]
41
+
42
+ text = tokenizer.apply_chat_template(
43
+ messages,
44
+ tokenize=False,
45
+ add_generation_prompt=True
46
+ )
47
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
48
+
49
+ generated_ids = model.generate(
50
+ model_inputs.input_ids,
51
+ max_new_tokens=50, ##change this to align with the official usage
52
+ do_sample=False ##change this to align with the official usage
53
+ )
54
+ generated_ids = [
55
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
56
+ ]
57
+
58
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
59
+ print(response)
60
+
61
+ ##prompt = "There is a girl who likes adventure,"
62
+ ##That's great! Adventure can be a wonderful way to explore the world, challenge oneself, and discover new things. What kind of adventures does she enjoy? Perhaps she likes hiking, traveling to new places, trying new activities, or maybe something else entirely
63
+
64
+ ##prompt = "Which one is bigger, 9.11 or 9.8"
65
+ ##To determine which number is larger between 9.11 and 9.8, you can compare the digits in each place value:
66
+ ##- The whole number part of both numbers is 9.
67
+ ##- For the decimal part:
68
+ ## - 9
69
+
70
+ ##prompt = "Once upon a time,"
71
+ ##Once upon a time, in a far-off land, there was a kingdom surrounded by lush green forests, sparkling rivers, and rolling hills. The people of this kingdom lived in harmony with nature and each other, under the wise rule of their king.
72
+
73
+ ##prompt = "请介绍一下阿里巴巴公司"
74
+ ##阿里巴巴集团创立于1999年,是以贸易作为发展起点,以数据作为核心驱动,并以技术作为基础支撑的公司。阿里巴巴集团业务包括核心电商、云计算、数字媒体及娱乐、创新项目四大板块。阿里巴巴
75
+
76
+ ```
77
+
78
+ ### Evaluate the model
79
+
80
+ pip3 install lm-eval==0.4.2
81
+
82
+ ```bash
83
+ git clone https://github.com/intel/auto-round
84
+ cd auto-round
85
+ python -m auto_round --model "OPEA/Qwen2.5-7B-Instruct-int4-inc" --eval --eval_bs 16 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu,gsm8k,cmmlu,ceval-valid
86
+ ```
87
+
88
+ | Metric | BF16 | INT4 |
89
+ |:-------------- | :----: | :----: |
90
+ | Avg | 0.7271 | 0.7221 |
91
+ | mmlu | 0.7891 | 0.7812 |
92
+ | cmmlu | 0.8378 | 0.8257 |
93
+ | ceval-valid | 0.8351 | 0.8276 |
94
+ | lambada_openai | 0.7343 | 0.7227 |
95
+ | hellaswag | 0.6562 | 0.6509 |
96
+ | winogrande | 0.7616 | 0.7585 |
97
+ | piqa | 0.8139 | 0.8128 |
98
+ | truthfulqa_mc1 | 0.5153 | 0.5116 |
99
+ | openbookqa | 0.3700 | 0.3620 |
100
+ | boolq | 0.8801 | 0.8801 |
101
+ | arc_easy | 0.8573 | 0.8548 |
102
+ | arc_challenge | 0.6067 | 0.6084 |
103
+ | gsm8k 5 shots | 0.7953 | 0.7908 |
104
+
105
+
106
+
107
+
108
+
109
+ ### Reproduce the model
110
+
111
+ Here is the sample command to reproduce the model. We observed a larger accuracy drop in Chinese tasks and recommend using a high-quality Chinese dataset for calibration. However, we did not achieve better accuracy with some public datasets.
112
+
113
+ ```bash
114
+ git clone https://github.com/intel/auto-round
115
+ cd auto-round
116
+ python -m auto_round \
117
+ --model_name Qwen/Qwen2.5-14B-Instruct \
118
+ --device 0 \
119
+ --group_size 128 \
120
+ --nsamples 512 \
121
+ --bits 4 \
122
+ --iter 1000 \
123
+ --disable_eval \
124
+ --model_dtype "float16" \
125
+ --format 'auto_round' \
126
+ --output_dir "./tmp_autoround"
127
+ ```
128
+
129
+
130
+
131
+ ## Ethical Considerations and Limitations
132
+
133
+ The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
134
+
135
+ Therefore, before deploying any applications of the model, developers should perform safety testing.
136
+
137
+ ## Caveats and Recommendations
138
+
139
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
140
+
141
+ Here are a couple of useful links to learn more about Intel's AI software:
142
+
143
+ * Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
144
+ * Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)
145
+
146
+ ## Disclaimer
147
+
148
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
149
+
150
+
151
+
152
+ ## Cite
153
+
154
+ @article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
155
+
156
+ [arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58b54bbe36fc752f79a24a271ef66a0a0830054b4dfad94bde757d851968060b
3
+ size 605
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89dacb213381240bde9b7a008be9115f745592becf66e0ba94fac63d9b68a245
3
+ size 1369
generation_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:519a8db66fcfd0d18731eb75169ff8393a6f9c479fd50142fb5ee2580bb9ae64
3
+ size 243
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9df1122608ae250335f374bb372dc41e9f09c1a33bd27217414960d80221118
3
+ size 9992417800
quantize_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40a1be12405e831fd26943690d41ea6d85bc4d452305943a8389fc54bba336c9
3
+ size 559
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76862e765266b85aa9459767e33cbaf13970f327a0e88d1c65846c2ddd3a1ecd
3
+ size 613
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e88129d9769a0b14b1587a7d5e829fe93ac0e1511636471fdfc0811951418e6
3
+ size 7306
vocab.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca10d7e9fb3ed18575dd1e277a2579c16d108e32f27439684afa0e10b1440910
3
+ size 2776833