--- license: apache-2.0 library_name: transformers base_model: OpenGVLab/InternVL2-4B pipeline_tag: image-text-to-text --- # OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis
[\[🏠Homepage\]](https://qiushisun.github.io/OS-Genesis-Home/) [\[💻Code\]](https://github.com/OS-Copilot/OS-Genesis) [\[📝Paper\]](https://arxiv.org/abs/2412.19723) [\[🤗Models\]](https://huggingface.co/collections/OS-Copilot/os-genesis-6768d4b6fffc431dbf624c2d)[\[🤗Data\]](https://huggingface.co/collections/OS-Copilot/os-genesis-6768d4b6fffc431dbf624c2d)
## Overview ![os-genesis](https://cdn-uploads.huggingface.co/production/uploads/6064a0eeb1703ddba0d458b9/XvcAh92uvJQglmIu_L_nK.png) We introduce OS-Genesis, an interaction-driven pipeline that synthesizes high-quality and diverse GUI agent trajectory data without human supervision. By leveraging reverse task synthesis, OS-Genesis enables effective training of GUI agents to achieve superior performance on dynamic benchmarks such as AndroidWorld and WebArena. ## Quick Start OS-Genesis-4B-AW is a mobile action model finetuned from [InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B). ### OS-Genesis AW Family Models In the following table, we provide an overview of the OS-Genesis AW Family Models used for evaluating the AndroidControl Benchmark. | Model Name | Base Model | Training Data | HF Link | | :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: | | OS-Genesis-4B-AW | [InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B) | [OS-Genesis-aw-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_aw_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-4B-AW) | | OS-Genesis-7B-AW | [Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) | [OS-Genesis-aw-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_aw_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-7B-AW) | | OS-Genesis-8B-AW | [InternVL2-8B](https://huggingface.co/OpenGVLab/InternVL2-8B) | [OS-Genesis-aw-training-data](https://huggingface.co/datasets/OS-Copilot/OS-Genesis-mobile-data/blob/main/os_genesis_aw_training_data.jsonl) | [🤗 link](https://huggingface.co/OS-Copilot/OS-Genesis-8B-AW) | ### Inference Example First, install the `transformers` library: ``` pip install transformers ``` For additional dependencies, please refer to the [InternVL2 documentation](https://internvl.readthedocs.io/en/latest/get_started/installation.html). For evaluating the AndroidWorld Benchmark, please refer to the [**evaluation code**](https://github.com/OS-Copilot/OS-Genesis/tree/main/evaluation/android_world). Inference code example: ```python import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = 'OS-Copilot/OS-Genesis-4B-AW' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # set the max number of tiles in `max_num` pixel_values = load_image('./web_dfacd48d-d2c2-492f-b94c-41e6a34ea99f.png', max_num=6).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=True) question = "\nYou are a GUI task expert, I will provide you with a high-level instruction, an action history, a screenshot with its corresponding accessibility tree.\n High-level instruction: {high_level_instruction}\n Action history: {action_history}\n Accessibility tree: {a11y_tree}\n Please generate the low-level thought and action for the next step." response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') ``` ## Citation If you find this repository helpful, feel free to cite our paper: ```bibtex @article{sun2024osgenesis, title={OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis}, author={Qiushi Sun and Kanzhi Cheng and Zichen Ding and Chuanyang Jin and Yian Wang and Fangzhi Xu and Zhenyu Wu and Chengyou Jia and Liheng Chen and Zhoumianze Liu and Ben Kao and Guohao Li and Junxian He and Yu Qiao and Zhiyong Wu}, journal={arXiv preprint arXiv:2412.19723}, year={2024} } ```