--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: tmp results: [] --- # tmp This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6486 - Precision: 0.6540 - Recall: 0.6944 - F1: 0.6736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 38 | 0.7892 | 0.5800 | 0.6787 | 0.6255 | | No log | 2.0 | 76 | 0.5906 | 0.7267 | 0.7540 | 0.7401 | | No log | 3.0 | 114 | 0.5466 | 0.7219 | 0.7771 | 0.7485 | | No log | 4.0 | 152 | 0.5249 | 0.7266 | 0.7623 | 0.7440 | | No log | 5.0 | 190 | 0.5261 | 0.7228 | 0.7674 | 0.7445 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2