File size: 8,143 Bytes
1587472
 
 
 
0bae23d
1587472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a2bf7
1587472
 
 
 
 
 
 
0bae23d
1587472
76af551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba61529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a2bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bae23d
1587472
 
ba29fd4
1587472
ba29fd4
1587472
 
 
 
 
 
 
 
 
 
0bae23d
1587472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bae23d
1587472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba29fd4
 
 
 
 
 
 
 
994a9cf
ba29fd4
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
base_model: Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
datasets:
- Omartificial-Intelligence-Space/Arabic-stsb
- Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class
language:
- ar
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- mteb
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:947818
- loss:SoftmaxLoss
- loss:CosineSimilarityLoss
- transformers
model-index:
- name: Omartificial-Intelligence-Space/GATE-AraBert-v1
  results:
  - dataset:
      config: ar-ar
      name: MTEB STS17 (ar-ar)
      revision: faeb762787bd10488a50c8b5be4a3b82e411949c
      split: test
      type: mteb/sts17-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 82.06597171670848
    - type: cosine_spearman
      value: 82.7809395809498
    - type: euclidean_pearson
      value: 79.23996991139896
    - type: euclidean_spearman
      value: 81.5287595404711
    - type: main_score
      value: 82.7809395809498
    - type: manhattan_pearson
      value: 78.95407006608013
    - type: manhattan_spearman
      value: 81.15109493737467
    task:
      type: STS
  - dataset:
      config: ar
      name: MTEB STS22.v2 (ar)
      revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 54.912880452465004
    - type: cosine_spearman
      value: 63.09788380910325
    - type: euclidean_pearson
      value: 57.92665617677832
    - type: euclidean_spearman
      value: 62.76032598469037
    - type: main_score
      value: 63.09788380910325
    - type: manhattan_pearson
      value: 58.0736648155273
    - type: manhattan_spearman
      value: 62.94190582776664
    task:
      type: STS
  - dataset:
      config: ar
      name: MTEB STS22 (ar)
      revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
      split: test
      type: mteb/sts22-crosslingual-sts
    metrics:
    - type: cosine_pearson
      value: 51.72534929358701
    - type: cosine_spearman
      value: 59.75149627160101
    - type: euclidean_pearson
      value: 53.894835373598774
    - type: euclidean_spearman
      value: 59.44278354697161
    - type: main_score
      value: 59.75149627160101
    - type: manhattan_pearson
      value: 54.076675975406985
    - type: manhattan_spearman
      value: 59.610061143235725
    task:
      type: STS
widget:
- source_sentence: امرأة تكتب شيئاً
  sentences:
  - مراهق يتحدث إلى فتاة عبر كاميرا الإنترنت
  - امرأة تقطع البصل الأخضر.
  - مجموعة من كبار السن يتظاهرون حول طاولة الطعام.
- source_sentence: تتشكل النجوم في مناطق تكوين النجوم، والتي تنشأ نفسها من السحب الجزيئية.
  sentences:
  - لاعب كرة السلة على وشك تسجيل نقاط لفريقه.
  - المقال التالي مأخوذ من نسختي من "أطلس البطريق الجديد للتاريخ الوسطى"
  - قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة
- source_sentence: >-
    تحت السماء الزرقاء مع الغيوم البيضاء، يصل طفل لمس مروحة طائرة واقفة على حقل
    من العشب.
  sentences:
  - امرأة تحمل كأساً
  - طفل يحاول لمس مروحة طائرة
  - اثنان من عازبين عن الشرب يستعدون للعشاء
- source_sentence: رجل في منتصف العمر يحلق لحيته في غرفة ذات جدران بيضاء والتي لا تبدو كحمام
  sentences:
  - فتى يخطط اسمه على مكتبه
  - رجل ينام
  - المرأة وحدها وهي نائمة في غرفة نومها
- source_sentence: الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.
  sentences:
  - شخص طويل القامة
  - المرأة تنظر من النافذة.
  - لقد مات الكلب
license: apache-2.0
---

# GATE-AraBert-V1

This is **GATE | General Arabic Text Embedding** trained using SentenceTransformers in a **multi-task** setup. The system trains on the **AllNLI** and on the **STS** dataset.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2](https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2) <!-- at revision 5ce4f80f3ede26de623d6ac10681399dba5c684a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [all-nli](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class)
    - [sts](https://huggingface.co/datasets/Omartificial-Intelligence-Space/arabic-stsb)
- **Language:** ar


## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v1")
# Run inference
sentences = [
    'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
    'لقد مات الكلب',
    'شخص طويل القامة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```


## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.8391    |
| **spearman_cosine** | **0.841** |
| pearson_manhattan   | 0.8277    |
| spearman_manhattan  | 0.8361    |
| pearson_euclidean   | 0.8274    |
| spearman_euclidean  | 0.8358    |
| pearson_dot         | 0.8154    |
| spearman_dot        | 0.818     |
| pearson_max         | 0.8391    |
| spearman_max        | 0.841     |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.813      |
| **spearman_cosine** | **0.8173** |
| pearson_manhattan   | 0.8114     |
| spearman_manhattan  | 0.8164     |
| pearson_euclidean   | 0.8103     |
| spearman_euclidean  | 0.8158     |
| pearson_dot         | 0.7908     |
| spearman_dot        | 0.7887     |
| pearson_max         | 0.813      |
| spearman_max        | 0.8173     |


## <span style="color:blue">Acknowledgments</span>

The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.


```markdown
## Citation

If you use the GATE, please cite it as follows:

@misc{nacar2025GATE,
      title={GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Hybrid Loss Training}, 
      author={Omer Nacar, Anis Koubaa, Serry Taiseer Sibaee and Lahouari Ghouti},
      year={2025},
      note={Submitted to COLING 2025},
      url={https://huggingface.co/Omartificial-Intelligence-Space/GATE-AraBert-v1},
}