--- base_model: - OmnicromsBrain/ToppyCox-10.7b - OmnicromsBrain/EverythingBagel-10.7b tags: - merge - mergekit - lazymergekit - OmnicromsBrain/ToppyCox-10.7b - OmnicromsBrain/EverythingBagel-10.7b --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65c70c9e21d80a923d664563/sM8repDdiFzeJ6M0twE88.png) # Eros_Scribe-10.7b-v3 This model was created for the purpose of writing NSFW Prose but it's also very good at RP. Versions 1 and 2 were the most verbose models I'd ever merged but they had lost most of their NSFW MoJo. I think I finally got the mix right as v3 returns some of the most NSFW I've seen... Over a dozen models and at least 25 dataset were involved in this merge. Eros_Scribe-10.7b-v3 is a merge of the following models: ## OmnicromsBrain/EverythingBagel-DPO-7B ### jondurbin/bagel-dpo-7b-v0.5 ### SanjiWatsuki/Silicon-Maid-7B chargoddard/loyal-piano-m7 NeverSleep/Noromaid-7b-v0.2 athirdpath/NSFW_DPO_vmgb-7b xDAN-AI/xDAN-L1-Chat-RL-v1 ## OmnicromsBrain/ToppyCox-7B ### N8Programs/Coxcomb ### Undi95/Toppy-M-7B openchat/openchat_3.5 NousResearch/Nous-Capybara-7B-V1.9 HuggingFaceH4/zephyr-7b-beta Undi95/zephyr-7b-beta-pippa-sharegpt Undi95/Nous-Capybara-7B-V1.9-120-Days Undi95/openchat_3.5-LimaRP-13B lemonilia/AshhLimaRP-Mistral-7B mistralai/Mistral-7B-v0.1 ## ⚡ Quantized Models Special thanks to **MRadermacher** for the **static** and **imatrix** quantized models **.GGUF** https://huggingface.co/mradermacher/Eros_Scribe-10.7b-v3-GGUF **IMatrix** https://huggingface.co/mradermacher/Eros_Scribe-10.7b-v3-i1-GGUF ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "OmnicromsBrain/Eros_Scribe-10.7b-v3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```