Text-to-3D
image-to-3d
File size: 6,367 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os, torch, cv2, re
import numpy as np

from PIL import Image
import torch.nn.functional as F
import torchvision.transforms as T

# Misc
img2mse = lambda x, y: torch.mean((x - y) ** 2)
mse2psnr = lambda x: -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8)
mse2psnr2 = lambda x: -10. * np.log(x) / np.log(10.)


def get_psnr(imgs_pred, imgs_gt):
    psnrs = []
    for (img, tar) in zip(imgs_pred, imgs_gt):
        psnrs.append(mse2psnr2(np.mean((img - tar.cpu().numpy()) ** 2)))
    return np.array(psnrs)


def init_log(log, keys):
    for key in keys:
        log[key] = torch.tensor([0.0], dtype=float)
    return log


def visualize_depth_numpy(depth, minmax=None, cmap=cv2.COLORMAP_JET):
    """
    depth: (H, W)
    """

    x = np.nan_to_num(depth)  # change nan to 0
    if minmax is None:
        mi = np.min(x[x > 0])  # get minimum positive depth (ignore background)
        ma = np.max(x)
    else:
        mi, ma = minmax

    x = (x - mi) / (ma - mi + 1e-8)  # normalize to 0~1
    x = (255 * x).astype(np.uint8)
    x_ = cv2.applyColorMap(x, cmap)
    return x_, [mi, ma]


def visualize_depth(depth, minmax=None, cmap=cv2.COLORMAP_JET):
    """
    depth: (H, W)
    """
    if type(depth) is not np.ndarray:
        depth = depth.cpu().numpy()

    x = np.nan_to_num(depth)  # change nan to 0
    if minmax is None:
        mi = np.min(x[x > 0])  # get minimum positive depth (ignore background)
        ma = np.max(x)
    else:
        mi, ma = minmax

    x = (x - mi) / (ma - mi + 1e-8)  # normalize to 0~1
    x = (255 * x).astype(np.uint8)
    x_ = Image.fromarray(cv2.applyColorMap(x, cmap))
    x_ = T.ToTensor()(x_)  # (3, H, W)
    return x_, [mi, ma]


def abs_error_numpy(depth_pred, depth_gt, mask):
    depth_pred, depth_gt = depth_pred[mask], depth_gt[mask]
    return np.abs(depth_pred - depth_gt)


def abs_error(depth_pred, depth_gt, mask):
    depth_pred, depth_gt = depth_pred[mask], depth_gt[mask]
    err = depth_pred - depth_gt
    return np.abs(err) if type(depth_pred) is np.ndarray else err.abs()


def acc_threshold(depth_pred, depth_gt, mask, threshold):
    """
    computes the percentage of pixels whose depth error is less than @threshold
    """
    errors = abs_error(depth_pred, depth_gt, mask)
    acc_mask = errors < threshold
    return acc_mask.astype('float') if type(depth_pred) is np.ndarray else acc_mask.float()


def to_tensor_cuda(data, device, filter):
    for item in data.keys():

        if item in filter:
            continue

        if type(data[item]) is np.ndarray:
            data[item] = torch.tensor(data[item], dtype=torch.float32, device=device)
        else:
            data[item] = data[item].float().to(device)
    return data


def to_cuda(data, device, filter):
    for item in data.keys():
        if item in filter:
            continue

        data[item] = data[item].float().to(device)
    return data


def tensor_unsqueeze(data, filter):
    for item in data.keys():
        if item in filter:
            continue

        data[item] = data[item][None]
    return data


def filter_keys(dict):
    dict.pop('N_samples')
    if 'ndc' in dict.keys():
        dict.pop('ndc')
    if 'lindisp' in dict.keys():
        dict.pop('lindisp')
    return dict


def sub_selete_data(data_batch, device, idx, filtKey=[],
                    filtIndex=['view_ids_all', 'c2ws_all', 'scan', 'bbox', 'w2ref', 'ref2w', 'light_id', 'ckpt',
                               'idx']):
    data_sub_selete = {}
    for item in data_batch.keys():
        data_sub_selete[item] = data_batch[item][:, idx].float() if (
                item not in filtIndex and torch.is_tensor(item) and item.dim() > 2) else data_batch[item].float()
        if not data_sub_selete[item].is_cuda:
            data_sub_selete[item] = data_sub_selete[item].to(device)
    return data_sub_selete


def detach_data(dictionary):
    dictionary_new = {}
    for key in dictionary.keys():
        dictionary_new[key] = dictionary[key].detach().clone()
    return dictionary_new


def read_pfm(filename):
    file = open(filename, 'rb')
    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().decode('utf-8').rstrip()
    if header == 'PF':
        color = True
    elif header == 'Pf':
        color = False
    else:
        raise Exception('Not a PFM file.')

    dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('utf-8'))
    if dim_match:
        width, height = map(int, dim_match.groups())
    else:
        raise Exception('Malformed PFM header.')

    scale = float(file.readline().rstrip())
    if scale < 0:  # little-endian
        endian = '<'
        scale = -scale
    else:
        endian = '>'  # big-endian

    data = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    file.close()
    return data, scale


from torch.optim.lr_scheduler import CosineAnnealingLR, MultiStepLR


# from warmup_scheduler import GradualWarmupScheduler
def get_scheduler(hparams, optimizer):
    eps = 1e-8
    if hparams.lr_scheduler == 'steplr':
        scheduler = MultiStepLR(optimizer, milestones=hparams.decay_step,
                                gamma=hparams.decay_gamma)
    elif hparams.lr_scheduler == 'cosine':
        scheduler = CosineAnnealingLR(optimizer, T_max=hparams.num_epochs, eta_min=eps)

    else:
        raise ValueError('scheduler not recognized!')

    # if hparams.warmup_epochs > 0 and hparams.optimizer not in ['radam', 'ranger']:
    #     scheduler = GradualWarmupScheduler(optimizer, multiplier=hparams.warmup_multiplier,
    #                                        total_epoch=hparams.warmup_epochs, after_scheduler=scheduler)
    return scheduler


####  pairing  ####
def get_nearest_pose_ids(tar_pose, ref_poses, num_select):
    '''
    Args:
        tar_pose: target pose [N, 4, 4]
        ref_poses: reference poses [M, 4, 4]
        num_select: the number of nearest views to select
    Returns: the selected indices
    '''

    dists = np.linalg.norm(tar_pose[:, None, :3, 3] - ref_poses[None, :, :3, 3], axis=-1)

    sorted_ids = np.argsort(dists, axis=-1)
    selected_ids = sorted_ids[:, :num_select]
    return selected_ids