Text-to-3D
image-to-3d
File size: 20,842 Bytes
1fae98d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import torch
import torch.nn as nn
import numpy as np
from functools import partial
import kornia

from ldm.modules.x_transformer import Encoder, TransformerWrapper  # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
from ldm.util import default
import clip


class AbstractEncoder(nn.Module):
    def __init__(self):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError

class IdentityEncoder(AbstractEncoder):

    def encode(self, x):
        return x

class FaceClipEncoder(AbstractEncoder):
    def __init__(self, augment=True, retreival_key=None):
        super().__init__()
        self.encoder = FrozenCLIPImageEmbedder()
        self.augment = augment
        self.retreival_key = retreival_key

    def forward(self, img):
        encodings = []
        with torch.no_grad():
            x_offset = 125
            if self.retreival_key:
                # Assumes retrieved image are packed into the second half of channels
                face = img[:,3:,190:440,x_offset:(512-x_offset)]
                other = img[:,:3,...].clone()
            else:
                face = img[:,:,190:440,x_offset:(512-x_offset)]
                other = img.clone()

            if self.augment:
                face = K.RandomHorizontalFlip()(face)

            other[:,:,190:440,x_offset:(512-x_offset)] *= 0
            encodings = [
                self.encoder.encode(face),
                self.encoder.encode(other),
            ]

        return torch.cat(encodings, dim=1)

    def encode(self, img):
        if isinstance(img, list):
            # Uncondition
            return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device)

        return self(img)

class FaceIdClipEncoder(AbstractEncoder):
    def __init__(self):
        super().__init__()
        self.encoder = FrozenCLIPImageEmbedder()
        for p in self.encoder.parameters():
            p.requires_grad = False
        self.id = FrozenFaceEncoder("/home/jpinkney/code/stable-diffusion/model_ir_se50.pth", augment=True)

    def forward(self, img):
        encodings = []
        with torch.no_grad():
            face = kornia.geometry.resize(img, (256, 256),
                            interpolation='bilinear', align_corners=True)

            other = img.clone()
            other[:,:,184:452,122:396] *= 0
            encodings = [
                self.id.encode(face),
                self.encoder.encode(other),
            ]

        return torch.cat(encodings, dim=1)

    def encode(self, img):
        if isinstance(img, list):
            # Uncondition
            return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device)

        return self(img)

class ClassEmbedder(nn.Module):
    def __init__(self, embed_dim, n_classes=1000, key='class'):
        super().__init__()
        self.key = key
        self.embedding = nn.Embedding(n_classes, embed_dim)

    def forward(self, batch, key=None):
        if key is None:
            key = self.key
        # this is for use in crossattn
        c = batch[key][:, None]
        c = self.embedding(c)
        return c


class TransformerEmbedder(AbstractEncoder):
    """Some transformer encoder layers"""
    def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
        super().__init__()
        self.device = device
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer))

    def forward(self, tokens):
        tokens = tokens.to(self.device)  # meh
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, x):
        return self(x)


class BERTTokenizer(AbstractEncoder):
    """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
    def __init__(self, device="cuda", vq_interface=True, max_length=77):
        super().__init__()
        from transformers import BertTokenizerFast  # TODO: add to reuquirements
        self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
        self.device = device
        self.vq_interface = vq_interface
        self.max_length = max_length

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        return tokens

    @torch.no_grad()
    def encode(self, text):
        tokens = self(text)
        if not self.vq_interface:
            return tokens
        return None, None, [None, None, tokens]

    def decode(self, text):
        return text


class BERTEmbedder(AbstractEncoder):
    """Uses the BERT tokenizr model and add some transformer encoder layers"""
    def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
                 device="cuda",use_tokenizer=True, embedding_dropout=0.0):
        super().__init__()
        self.use_tknz_fn = use_tokenizer
        if self.use_tknz_fn:
            self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
        self.device = device
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer),
                                              emb_dropout=embedding_dropout)

    def forward(self, text):
        if self.use_tknz_fn:
            tokens = self.tknz_fn(text)#.to(self.device)
        else:
            tokens = text
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, text):
        # output of length 77
        return self(text)


from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel

def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


class FrozenT5Embedder(AbstractEncoder):
    """Uses the T5 transformer encoder for text"""
    def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77):  # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
        super().__init__()
        self.tokenizer = T5Tokenizer.from_pretrained(version)
        self.transformer = T5EncoderModel.from_pretrained(version)
        self.device = device
        self.max_length = max_length   # TODO: typical value?
        self.freeze()

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        outputs = self.transformer(input_ids=tokens)

        z = outputs.last_hidden_state
        return z

    def encode(self, text):
        return self(text)

from ldm.thirdp.psp.id_loss import IDFeatures
import kornia.augmentation as K

class FrozenFaceEncoder(AbstractEncoder):
    def __init__(self, model_path, augment=False):
        super().__init__()
        self.loss_fn = IDFeatures(model_path)
        # face encoder is frozen
        for p in self.loss_fn.parameters():
            p.requires_grad = False
        # Mapper is trainable
        self.mapper = torch.nn.Linear(512, 768)
        p = 0.25
        if augment:
            self.augment = K.AugmentationSequential(
                K.RandomHorizontalFlip(p=0.5),
                K.RandomEqualize(p=p),
                # K.RandomPlanckianJitter(p=p),
                # K.RandomPlasmaBrightness(p=p),
                # K.RandomPlasmaContrast(p=p),
                # K.ColorJiggle(0.02, 0.2, 0.2, p=p),
            )
        else:
            self.augment = False

    def forward(self, img):
        if isinstance(img, list):
            # Uncondition
            return torch.zeros((1, 1, 768), device=self.mapper.weight.device)

        if self.augment is not None:
            # Transforms require 0-1
            img = self.augment((img + 1)/2)
            img = 2*img - 1

        feat = self.loss_fn(img, crop=True)
        feat = self.mapper(feat.unsqueeze(1))
        return feat

    def encode(self, img):
        return self(img)

class FrozenCLIPEmbedder(AbstractEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):  # clip-vit-base-patch32
        super().__init__()
        self.tokenizer = CLIPTokenizer.from_pretrained(version)
        self.transformer = CLIPTextModel.from_pretrained(version)
        self.device = device
        self.max_length = max_length   # TODO: typical value?
        self.freeze()

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        outputs = self.transformer(input_ids=tokens)

        z = outputs.last_hidden_state
        return z

    def encode(self, text):
        return self(text)

import torch.nn.functional as F
from transformers import CLIPVisionModel
class ClipImageProjector(AbstractEncoder):
    """
        Uses the CLIP image encoder.
        """
    def __init__(self, version="openai/clip-vit-large-patch14", max_length=77):  # clip-vit-base-patch32
        super().__init__()
        self.model = CLIPVisionModel.from_pretrained(version)
        self.model.train()
        self.max_length = max_length   # TODO: typical value?
        self.antialias = True
        self.mapper = torch.nn.Linear(1024, 768)
        self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
        self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
        null_cond = self.get_null_cond(version, max_length)
        self.register_buffer('null_cond', null_cond)

    @torch.no_grad()
    def get_null_cond(self, version, max_length):
        device = self.mean.device
        embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
        null_cond = embedder([""])
        return null_cond

    def preprocess(self, x):
        # Expects inputs in the range -1, 1
        x = kornia.geometry.resize(x, (224, 224),
                                   interpolation='bicubic',align_corners=True,
                                   antialias=self.antialias)
        x = (x + 1.) / 2.
        # renormalize according to clip
        x = kornia.enhance.normalize(x, self.mean, self.std)
        return x

    def forward(self, x):
        if isinstance(x, list):
            return self.null_cond
        # x is assumed to be in range [-1,1]
        x = self.preprocess(x)
        outputs = self.model(pixel_values=x)
        last_hidden_state = outputs.last_hidden_state
        last_hidden_state = self.mapper(last_hidden_state)
        return F.pad(last_hidden_state, [0,0, 0,self.max_length-last_hidden_state.shape[1], 0,0])

    def encode(self, im):
        return self(im)

class ProjectedFrozenCLIPEmbedder(AbstractEncoder):
    def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):  # clip-vit-base-patch32
        super().__init__()
        self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
        self.projection = torch.nn.Linear(768, 768)

    def forward(self, text):
        z = self.embedder(text)
        return self.projection(z)

    def encode(self, text):
        return self(text)

class FrozenCLIPImageEmbedder(AbstractEncoder):
    """
        Uses the CLIP image encoder.
        Not actually frozen... If you want that set cond_stage_trainable=False in cfg
        """
    def __init__(
            self,
            model='ViT-L/14',
            jit=False,
            device='cpu',
            antialias=False,
        ):
        super().__init__()
        self.model, _ = clip.load(name=model, device=device, jit=jit)
        # We don't use the text part so delete it
        del self.model.transformer
        self.antialias = antialias
        self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
        self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)

    def preprocess(self, x):
        # Expects inputs in the range -1, 1
        x = kornia.geometry.resize(x, (224, 224),
                                   interpolation='bicubic',align_corners=True,
                                   antialias=self.antialias)
        x = (x + 1.) / 2.
        # renormalize according to clip
        x = kornia.enhance.normalize(x, self.mean, self.std)
        return x

    def forward(self, x):
        # x is assumed to be in range [-1,1]
        if isinstance(x, list):
            # [""] denotes condition dropout for ucg
            device = self.model.visual.conv1.weight.device
            return torch.zeros(1, 768, device=device)
        return self.model.encode_image(self.preprocess(x)).float()

    def encode(self, im):
        return self(im).unsqueeze(1)

from torchvision import transforms
import random

class FrozenCLIPImageMutliEmbedder(AbstractEncoder):
    """
        Uses the CLIP image encoder.
        Not actually frozen... If you want that set cond_stage_trainable=False in cfg
        """
    def __init__(
            self,
            model='ViT-L/14',
            jit=False,
            device='cpu',
            antialias=True,
            max_crops=5,
        ):
        super().__init__()
        self.model, _ = clip.load(name=model, device=device, jit=jit)
        # We don't use the text part so delete it
        del self.model.transformer
        self.antialias = antialias
        self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
        self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
        self.max_crops = max_crops

    def preprocess(self, x):

        # Expects inputs in the range -1, 1
        randcrop = transforms.RandomResizedCrop(224, scale=(0.085, 1.0), ratio=(1,1))
        max_crops = self.max_crops
        patches = []
        crops = [randcrop(x) for _ in range(max_crops)]
        patches.extend(crops)
        x = torch.cat(patches, dim=0)
        x = (x + 1.) / 2.
        # renormalize according to clip
        x = kornia.enhance.normalize(x, self.mean, self.std)
        return x

    def forward(self, x):
        # x is assumed to be in range [-1,1]
        if isinstance(x, list):
            # [""] denotes condition dropout for ucg
            device = self.model.visual.conv1.weight.device
            return torch.zeros(1, self.max_crops, 768, device=device)
        batch_tokens = []
        for im in x:
            patches = self.preprocess(im.unsqueeze(0))
            tokens = self.model.encode_image(patches).float()
            for t in tokens:
                if random.random() < 0.1:
                    t *= 0
            batch_tokens.append(tokens.unsqueeze(0))

        return torch.cat(batch_tokens, dim=0)

    def encode(self, im):
        return self(im)

class SpatialRescaler(nn.Module):
    def __init__(self,
                 n_stages=1,
                 method='bilinear',
                 multiplier=0.5,
                 in_channels=3,
                 out_channels=None,
                 bias=False):
        super().__init__()
        self.n_stages = n_stages
        assert self.n_stages >= 0
        assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
        self.multiplier = multiplier
        self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
        self.remap_output = out_channels is not None
        if self.remap_output:
            print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
            self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)

    def forward(self,x):
        for stage in range(self.n_stages):
            x = self.interpolator(x, scale_factor=self.multiplier)


        if self.remap_output:
            x = self.channel_mapper(x)
        return x

    def encode(self, x):
        return self(x)


from ldm.util import instantiate_from_config
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like


class LowScaleEncoder(nn.Module):
    def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64,
                 scale_factor=1.0):
        super().__init__()
        self.max_noise_level = max_noise_level
        self.model = instantiate_from_config(model_config)
        self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start,
                                                            linear_end=linear_end)
        self.out_size = output_size
        self.scale_factor = scale_factor

    def register_schedule(self, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
                                   cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end
        assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)

    def forward(self, x):
        z = self.model.encode(x).sample()
        z = z * self.scale_factor
        noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
        z = self.q_sample(z, noise_level)
        if self.out_size is not None:
            z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest")  # TODO: experiment with mode
        # z = z.repeat_interleave(2, -2).repeat_interleave(2, -1)
        return z, noise_level

    def decode(self, z):
        z = z / self.scale_factor
        return self.model.decode(z)


if __name__ == "__main__":
    from ldm.util import count_params
    sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"]
    model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda()
    count_params(model, True)
    z = model(sentences)
    print(z.shape)

    model = FrozenCLIPEmbedder().cuda()
    count_params(model, True)
    z = model(sentences)
    print(z.shape)

    print("done.")