|
import os |
|
import numpy as np |
|
import torch |
|
|
|
import cv2 |
|
from PIL import Image |
|
|
|
import time |
|
from utils import find_image_file |
|
|
|
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator |
|
|
|
def sam_init(device_id=0): |
|
sam_checkpoint = "/home/chao/chao/OpenComplete/segment-anything/sam_vit_h_4b8939.pth" |
|
model_type = "vit_h" |
|
|
|
device = "cuda:{}".format(device_id) if torch.cuda.is_available() else "cpu" |
|
|
|
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
sam.to(device=device) |
|
predictor = SamPredictor(sam) |
|
|
|
return predictor |
|
|
|
def sam_out(predictor, shape_dir): |
|
image_path = os.path.join(shape_dir, find_image_file(shape_dir)) |
|
save_path = os.path.join(shape_dir, "image_sam.png") |
|
bbox_path = os.path.join(shape_dir, "bbox.txt") |
|
bbox = np.loadtxt(bbox_path, delimiter=',') |
|
image = cv2.imread(image_path) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
start_time = time.time() |
|
predictor.set_image(image) |
|
|
|
h, w, _ = image.shape |
|
input_point = np.array([[h//2, w//2]]) |
|
input_label = np.array([1]) |
|
|
|
masks, scores, logits = predictor.predict( |
|
point_coords=input_point, |
|
point_labels=input_label, |
|
multimask_output=True, |
|
) |
|
|
|
masks_bbox, scores_bbox, logits_bbox = predictor.predict( |
|
box=bbox, |
|
multimask_output=True |
|
) |
|
|
|
print(f"SAM Time: {time.time() - start_time:.3f}s") |
|
opt_idx = np.argmax(scores) |
|
mask = masks[opt_idx] |
|
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) |
|
out_image[:, :, :3] = image |
|
out_image_bbox = out_image.copy() |
|
out_image[:, :, 3] = mask.astype(np.uint8) * 255 |
|
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 |
|
cv2.imwrite(save_path, cv2.cvtColor(out_image_bbox, cv2.COLOR_RGBA2BGRA)) |
|
|
|
|
|
def convert_from_cv2_to_image(img: np.ndarray) -> Image: |
|
return Image.fromarray(img) |
|
|
|
|
|
def convert_from_image_to_cv2(img: Image) -> np.ndarray: |
|
return np.asarray(img) |
|
|
|
|
|
def sam_out_nosave(predictor, input_image, *bbox_sliders): |
|
|
|
|
|
|
|
bbox = np.array(bbox_sliders) |
|
image = convert_from_image_to_cv2(input_image) |
|
|
|
start_time = time.time() |
|
predictor.set_image(image) |
|
|
|
h, w, _ = image.shape |
|
input_point = np.array([[h//2, w//2]]) |
|
input_label = np.array([1]) |
|
|
|
masks, scores, logits = predictor.predict( |
|
point_coords=input_point, |
|
point_labels=input_label, |
|
multimask_output=True, |
|
) |
|
|
|
masks_bbox, scores_bbox, logits_bbox = predictor.predict( |
|
box=bbox, |
|
multimask_output=True |
|
) |
|
|
|
print(f"SAM Time: {time.time() - start_time:.3f}s") |
|
opt_idx = np.argmax(scores) |
|
mask = masks[opt_idx] |
|
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) |
|
out_image[:, :, :3] = image |
|
out_image_bbox = out_image.copy() |
|
out_image[:, :, 3] = mask.astype(np.uint8) * 255 |
|
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 |
|
return Image.fromarray(out_image_bbox, mode='RGBA') |
|
cv2.imwrite(save_path, cv2.cvtColor(out_image_bbox, cv2.COLOR_RGBA2BGRA)) |