Text-to-3D
image-to-3d
Chao Xu
sparseneus and elev est
854f0d0
raw
history blame
3.19 kB
import torch
import torch.nn as nn
""" Positional encoding embedding. Code was taken from https://github.com/bmild/nerf. """
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2. ** torch.linspace(0., max_freq, N_freqs)
else:
freq_bands = torch.linspace(2. ** 0., 2. ** max_freq, N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
if self.kwargs['normalize']:
embed_fns.append(lambda x, p_fn=p_fn,
freq=freq: p_fn(x * freq) / freq)
else:
embed_fns.append(lambda x, p_fn=p_fn,
freq=freq: p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, normalize=False, input_dims=3):
embed_kwargs = {
'include_input': True,
'input_dims': input_dims,
'max_freq_log2': multires - 1,
'num_freqs': multires,
'normalize': normalize,
'log_sampling': True,
'periodic_fns': [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj): return eo.embed(x)
return embed, embedder_obj.out_dim
class Embedding(nn.Module):
def __init__(self, in_channels, N_freqs, logscale=True, normalize=False):
"""
Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...)
in_channels: number of input channels (3 for both xyz and direction)
"""
super(Embedding, self).__init__()
self.N_freqs = N_freqs
self.in_channels = in_channels
self.funcs = [torch.sin, torch.cos]
self.out_channels = in_channels * (len(self.funcs) * N_freqs + 1)
self.normalize = normalize
if logscale:
self.freq_bands = 2 ** torch.linspace(0, N_freqs - 1, N_freqs)
else:
self.freq_bands = torch.linspace(1, 2 ** (N_freqs - 1), N_freqs)
def forward(self, x):
"""
Embeds x to (x, sin(2^k x), cos(2^k x), ...)
Different from the paper, "x" is also in the output
See https://github.com/bmild/nerf/issues/12
Inputs:
x: (B, self.in_channels)
Outputs:
out: (B, self.out_channels)
"""
out = [x]
for freq in self.freq_bands:
for func in self.funcs:
if self.normalize:
out += [func(freq * x) / freq]
else:
out += [func(freq * x)]
return torch.cat(out, -1)