|
import torch |
|
import torch.nn as nn |
|
import torchsparse |
|
import torchsparse.nn as spnn |
|
from torchsparse.tensor import PointTensor |
|
|
|
from tsparse.torchsparse_utils import * |
|
|
|
|
|
|
|
|
|
|
|
class ConvBnReLU(nn.Module): |
|
def __init__(self, in_channels, out_channels, |
|
kernel_size=3, stride=1, pad=1): |
|
super(ConvBnReLU, self).__init__() |
|
self.conv = nn.Conv2d(in_channels, out_channels, |
|
kernel_size, stride=stride, padding=pad, bias=False) |
|
self.bn = nn.BatchNorm2d(out_channels) |
|
self.activation = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
return self.activation(self.bn(self.conv(x))) |
|
|
|
|
|
class ConvBnReLU3D(nn.Module): |
|
def __init__(self, in_channels, out_channels, |
|
kernel_size=3, stride=1, pad=1): |
|
super(ConvBnReLU3D, self).__init__() |
|
self.conv = nn.Conv3d(in_channels, out_channels, |
|
kernel_size, stride=stride, padding=pad, bias=False) |
|
self.bn = nn.BatchNorm3d(out_channels) |
|
self.activation = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
return self.activation(self.bn(self.conv(x))) |
|
|
|
|
|
|
|
class FeatureNet(nn.Module): |
|
""" |
|
output 3 levels of features using a FPN structure |
|
""" |
|
|
|
def __init__(self): |
|
super(FeatureNet, self).__init__() |
|
|
|
self.conv0 = nn.Sequential( |
|
ConvBnReLU(3, 8, 3, 1, 1), |
|
ConvBnReLU(8, 8, 3, 1, 1)) |
|
|
|
self.conv1 = nn.Sequential( |
|
ConvBnReLU(8, 16, 5, 2, 2), |
|
ConvBnReLU(16, 16, 3, 1, 1), |
|
ConvBnReLU(16, 16, 3, 1, 1)) |
|
|
|
self.conv2 = nn.Sequential( |
|
ConvBnReLU(16, 32, 5, 2, 2), |
|
ConvBnReLU(32, 32, 3, 1, 1), |
|
ConvBnReLU(32, 32, 3, 1, 1)) |
|
|
|
self.toplayer = nn.Conv2d(32, 32, 1) |
|
self.lat1 = nn.Conv2d(16, 32, 1) |
|
self.lat0 = nn.Conv2d(8, 32, 1) |
|
|
|
|
|
self.smooth1 = nn.Conv2d(32, 16, 3, padding=1) |
|
self.smooth0 = nn.Conv2d(32, 8, 3, padding=1) |
|
|
|
def _upsample_add(self, x, y): |
|
return torch.nn.functional.interpolate(x, scale_factor=2, |
|
mode="bilinear", align_corners=True) + y |
|
|
|
def forward(self, x): |
|
|
|
conv0 = self.conv0(x) |
|
conv1 = self.conv1(conv0) |
|
conv2 = self.conv2(conv1) |
|
feat2 = self.toplayer(conv2) |
|
feat1 = self._upsample_add(feat2, self.lat1(conv1)) |
|
feat0 = self._upsample_add(feat1, self.lat0(conv0)) |
|
|
|
|
|
feat1 = self.smooth1(feat1) |
|
feat0 = self.smooth0(feat0) |
|
|
|
|
|
|
|
|
|
|
|
return [feat2, feat1, feat0] |
|
|
|
|
|
class BasicSparseConvolutionBlock(nn.Module): |
|
def __init__(self, inc, outc, ks=3, stride=1, dilation=1): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
spnn.Conv3d(inc, |
|
outc, |
|
kernel_size=ks, |
|
dilation=dilation, |
|
stride=stride), |
|
spnn.BatchNorm(outc), |
|
spnn.ReLU(True)) |
|
|
|
def forward(self, x): |
|
out = self.net(x) |
|
return out |
|
|
|
|
|
class BasicSparseDeconvolutionBlock(nn.Module): |
|
def __init__(self, inc, outc, ks=3, stride=1): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
spnn.Conv3d(inc, |
|
outc, |
|
kernel_size=ks, |
|
stride=stride, |
|
transposed=True), |
|
spnn.BatchNorm(outc), |
|
spnn.ReLU(True)) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class SparseResidualBlock(nn.Module): |
|
def __init__(self, inc, outc, ks=3, stride=1, dilation=1): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
spnn.Conv3d(inc, |
|
outc, |
|
kernel_size=ks, |
|
dilation=dilation, |
|
stride=stride), spnn.BatchNorm(outc), |
|
spnn.ReLU(True), |
|
spnn.Conv3d(outc, |
|
outc, |
|
kernel_size=ks, |
|
dilation=dilation, |
|
stride=1), spnn.BatchNorm(outc)) |
|
|
|
self.downsample = nn.Sequential() if (inc == outc and stride == 1) else \ |
|
nn.Sequential( |
|
spnn.Conv3d(inc, outc, kernel_size=1, dilation=1, stride=stride), |
|
spnn.BatchNorm(outc) |
|
) |
|
|
|
self.relu = spnn.ReLU(True) |
|
|
|
def forward(self, x): |
|
out = self.relu(self.net(x) + self.downsample(x)) |
|
return out |
|
|
|
|
|
class SPVCNN(nn.Module): |
|
def __init__(self, **kwargs): |
|
super().__init__() |
|
|
|
self.dropout = kwargs['dropout'] |
|
|
|
cr = kwargs.get('cr', 1.0) |
|
cs = [32, 64, 128, 96, 96] |
|
cs = [int(cr * x) for x in cs] |
|
|
|
if 'pres' in kwargs and 'vres' in kwargs: |
|
self.pres = kwargs['pres'] |
|
self.vres = kwargs['vres'] |
|
|
|
self.stem = nn.Sequential( |
|
spnn.Conv3d(kwargs['in_channels'], cs[0], kernel_size=3, stride=1), |
|
spnn.BatchNorm(cs[0]), spnn.ReLU(True) |
|
) |
|
|
|
self.stage1 = nn.Sequential( |
|
BasicSparseConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1), |
|
SparseResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1), |
|
SparseResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1), |
|
) |
|
|
|
self.stage2 = nn.Sequential( |
|
BasicSparseConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1), |
|
SparseResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1), |
|
SparseResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1), |
|
) |
|
|
|
self.up1 = nn.ModuleList([ |
|
BasicSparseDeconvolutionBlock(cs[2], cs[3], ks=2, stride=2), |
|
nn.Sequential( |
|
SparseResidualBlock(cs[3] + cs[1], cs[3], ks=3, stride=1, |
|
dilation=1), |
|
SparseResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1), |
|
) |
|
]) |
|
|
|
self.up2 = nn.ModuleList([ |
|
BasicSparseDeconvolutionBlock(cs[3], cs[4], ks=2, stride=2), |
|
nn.Sequential( |
|
SparseResidualBlock(cs[4] + cs[0], cs[4], ks=3, stride=1, |
|
dilation=1), |
|
SparseResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1), |
|
) |
|
]) |
|
|
|
self.point_transforms = nn.ModuleList([ |
|
nn.Sequential( |
|
nn.Linear(cs[0], cs[2]), |
|
nn.BatchNorm1d(cs[2]), |
|
nn.ReLU(True), |
|
), |
|
nn.Sequential( |
|
nn.Linear(cs[2], cs[4]), |
|
nn.BatchNorm1d(cs[4]), |
|
nn.ReLU(True), |
|
) |
|
]) |
|
|
|
self.weight_initialization() |
|
|
|
if self.dropout: |
|
self.dropout = nn.Dropout(0.3, True) |
|
|
|
def weight_initialization(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.BatchNorm1d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, z): |
|
|
|
x0 = initial_voxelize(z, self.pres, self.vres) |
|
|
|
x0 = self.stem(x0) |
|
z0 = voxel_to_point(x0, z, nearest=False) |
|
z0.F = z0.F |
|
|
|
x1 = point_to_voxel(x0, z0) |
|
x1 = self.stage1(x1) |
|
x2 = self.stage2(x1) |
|
z1 = voxel_to_point(x2, z0) |
|
z1.F = z1.F + self.point_transforms[0](z0.F) |
|
|
|
y3 = point_to_voxel(x2, z1) |
|
if self.dropout: |
|
y3.F = self.dropout(y3.F) |
|
y3 = self.up1[0](y3) |
|
y3 = torchsparse.cat([y3, x1]) |
|
y3 = self.up1[1](y3) |
|
|
|
y4 = self.up2[0](y3) |
|
y4 = torchsparse.cat([y4, x0]) |
|
y4 = self.up2[1](y4) |
|
z3 = voxel_to_point(y4, z1) |
|
z3.F = z3.F + self.point_transforms[1](z1.F) |
|
|
|
return z3.F |
|
|
|
|
|
class SparseCostRegNet(nn.Module): |
|
""" |
|
Sparse cost regularization network; |
|
require sparse tensors as input |
|
""" |
|
|
|
def __init__(self, d_in, d_out=8): |
|
super(SparseCostRegNet, self).__init__() |
|
self.d_in = d_in |
|
self.d_out = d_out |
|
|
|
self.conv0 = BasicSparseConvolutionBlock(d_in, d_out) |
|
|
|
self.conv1 = BasicSparseConvolutionBlock(d_out, 16, stride=2) |
|
self.conv2 = BasicSparseConvolutionBlock(16, 16) |
|
|
|
self.conv3 = BasicSparseConvolutionBlock(16, 32, stride=2) |
|
self.conv4 = BasicSparseConvolutionBlock(32, 32) |
|
|
|
self.conv5 = BasicSparseConvolutionBlock(32, 64, stride=2) |
|
self.conv6 = BasicSparseConvolutionBlock(64, 64) |
|
|
|
self.conv7 = BasicSparseDeconvolutionBlock(64, 32, ks=3, stride=2) |
|
|
|
self.conv9 = BasicSparseDeconvolutionBlock(32, 16, ks=3, stride=2) |
|
|
|
self.conv11 = BasicSparseDeconvolutionBlock(16, d_out, ks=3, stride=2) |
|
|
|
def forward(self, x): |
|
""" |
|
|
|
:param x: sparse tensor |
|
:return: sparse tensor |
|
""" |
|
conv0 = self.conv0(x) |
|
conv2 = self.conv2(self.conv1(conv0)) |
|
conv4 = self.conv4(self.conv3(conv2)) |
|
|
|
x = self.conv6(self.conv5(conv4)) |
|
x = conv4 + self.conv7(x) |
|
del conv4 |
|
x = conv2 + self.conv9(x) |
|
del conv2 |
|
x = conv0 + self.conv11(x) |
|
del conv0 |
|
return x.F |
|
|
|
|
|
class SConv3d(nn.Module): |
|
def __init__(self, inc, outc, pres, vres, ks=3, stride=1, dilation=1): |
|
super().__init__() |
|
self.net = spnn.Conv3d(inc, |
|
outc, |
|
kernel_size=ks, |
|
dilation=dilation, |
|
stride=stride) |
|
self.point_transforms = nn.Sequential( |
|
nn.Linear(inc, outc), |
|
) |
|
self.pres = pres |
|
self.vres = vres |
|
|
|
def forward(self, z): |
|
x = initial_voxelize(z, self.pres, self.vres) |
|
x = self.net(x) |
|
out = voxel_to_point(x, z, nearest=False) |
|
out.F = out.F + self.point_transforms(z.F) |
|
return out |
|
|