|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from functools import partial |
|
import kornia |
|
|
|
from ldm.modules.x_transformer import Encoder, TransformerWrapper |
|
from ldm.util import default |
|
import clip |
|
|
|
|
|
class AbstractEncoder(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def encode(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
class IdentityEncoder(AbstractEncoder): |
|
|
|
def encode(self, x): |
|
return x |
|
|
|
class FaceClipEncoder(AbstractEncoder): |
|
def __init__(self, augment=True, retreival_key=None): |
|
super().__init__() |
|
self.encoder = FrozenCLIPImageEmbedder() |
|
self.augment = augment |
|
self.retreival_key = retreival_key |
|
|
|
def forward(self, img): |
|
encodings = [] |
|
with torch.no_grad(): |
|
x_offset = 125 |
|
if self.retreival_key: |
|
|
|
face = img[:,3:,190:440,x_offset:(512-x_offset)] |
|
other = img[:,:3,...].clone() |
|
else: |
|
face = img[:,:,190:440,x_offset:(512-x_offset)] |
|
other = img.clone() |
|
|
|
if self.augment: |
|
face = K.RandomHorizontalFlip()(face) |
|
|
|
other[:,:,190:440,x_offset:(512-x_offset)] *= 0 |
|
encodings = [ |
|
self.encoder.encode(face), |
|
self.encoder.encode(other), |
|
] |
|
|
|
return torch.cat(encodings, dim=1) |
|
|
|
def encode(self, img): |
|
if isinstance(img, list): |
|
|
|
return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device) |
|
|
|
return self(img) |
|
|
|
class FaceIdClipEncoder(AbstractEncoder): |
|
def __init__(self): |
|
super().__init__() |
|
self.encoder = FrozenCLIPImageEmbedder() |
|
for p in self.encoder.parameters(): |
|
p.requires_grad = False |
|
self.id = FrozenFaceEncoder("/home/jpinkney/code/stable-diffusion/model_ir_se50.pth", augment=True) |
|
|
|
def forward(self, img): |
|
encodings = [] |
|
with torch.no_grad(): |
|
face = kornia.geometry.resize(img, (256, 256), |
|
interpolation='bilinear', align_corners=True) |
|
|
|
other = img.clone() |
|
other[:,:,184:452,122:396] *= 0 |
|
encodings = [ |
|
self.id.encode(face), |
|
self.encoder.encode(other), |
|
] |
|
|
|
return torch.cat(encodings, dim=1) |
|
|
|
def encode(self, img): |
|
if isinstance(img, list): |
|
|
|
return torch.zeros((1, 2, 768), device=self.encoder.model.visual.conv1.weight.device) |
|
|
|
return self(img) |
|
|
|
class ClassEmbedder(nn.Module): |
|
def __init__(self, embed_dim, n_classes=1000, key='class'): |
|
super().__init__() |
|
self.key = key |
|
self.embedding = nn.Embedding(n_classes, embed_dim) |
|
|
|
def forward(self, batch, key=None): |
|
if key is None: |
|
key = self.key |
|
|
|
c = batch[key][:, None] |
|
c = self.embedding(c) |
|
return c |
|
|
|
|
|
class TransformerEmbedder(AbstractEncoder): |
|
"""Some transformer encoder layers""" |
|
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): |
|
super().__init__() |
|
self.device = device |
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, |
|
attn_layers=Encoder(dim=n_embed, depth=n_layer)) |
|
|
|
def forward(self, tokens): |
|
tokens = tokens.to(self.device) |
|
z = self.transformer(tokens, return_embeddings=True) |
|
return z |
|
|
|
def encode(self, x): |
|
return self(x) |
|
|
|
|
|
class BERTTokenizer(AbstractEncoder): |
|
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" |
|
def __init__(self, device="cuda", vq_interface=True, max_length=77): |
|
super().__init__() |
|
from transformers import BertTokenizerFast |
|
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") |
|
self.device = device |
|
self.vq_interface = vq_interface |
|
self.max_length = max_length |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
return tokens |
|
|
|
@torch.no_grad() |
|
def encode(self, text): |
|
tokens = self(text) |
|
if not self.vq_interface: |
|
return tokens |
|
return None, None, [None, None, tokens] |
|
|
|
def decode(self, text): |
|
return text |
|
|
|
|
|
class BERTEmbedder(AbstractEncoder): |
|
"""Uses the BERT tokenizr model and add some transformer encoder layers""" |
|
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, |
|
device="cuda",use_tokenizer=True, embedding_dropout=0.0): |
|
super().__init__() |
|
self.use_tknz_fn = use_tokenizer |
|
if self.use_tknz_fn: |
|
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) |
|
self.device = device |
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, |
|
attn_layers=Encoder(dim=n_embed, depth=n_layer), |
|
emb_dropout=embedding_dropout) |
|
|
|
def forward(self, text): |
|
if self.use_tknz_fn: |
|
tokens = self.tknz_fn(text) |
|
else: |
|
tokens = text |
|
z = self.transformer(tokens, return_embeddings=True) |
|
return z |
|
|
|
def encode(self, text): |
|
|
|
return self(text) |
|
|
|
|
|
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel |
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
class FrozenT5Embedder(AbstractEncoder): |
|
"""Uses the T5 transformer encoder for text""" |
|
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77): |
|
super().__init__() |
|
self.tokenizer = T5Tokenizer.from_pretrained(version) |
|
self.transformer = T5EncoderModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
self.freeze() |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer(input_ids=tokens) |
|
|
|
z = outputs.last_hidden_state |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
from ldm.thirdp.psp.id_loss import IDFeatures |
|
import kornia.augmentation as K |
|
|
|
class FrozenFaceEncoder(AbstractEncoder): |
|
def __init__(self, model_path, augment=False): |
|
super().__init__() |
|
self.loss_fn = IDFeatures(model_path) |
|
|
|
for p in self.loss_fn.parameters(): |
|
p.requires_grad = False |
|
|
|
self.mapper = torch.nn.Linear(512, 768) |
|
p = 0.25 |
|
if augment: |
|
self.augment = K.AugmentationSequential( |
|
K.RandomHorizontalFlip(p=0.5), |
|
K.RandomEqualize(p=p), |
|
|
|
|
|
|
|
|
|
) |
|
else: |
|
self.augment = False |
|
|
|
def forward(self, img): |
|
if isinstance(img, list): |
|
|
|
return torch.zeros((1, 1, 768), device=self.mapper.weight.device) |
|
|
|
if self.augment is not None: |
|
|
|
img = self.augment((img + 1)/2) |
|
img = 2*img - 1 |
|
|
|
feat = self.loss_fn(img, crop=True) |
|
feat = self.mapper(feat.unsqueeze(1)) |
|
return feat |
|
|
|
def encode(self, img): |
|
return self(img) |
|
|
|
class FrozenCLIPEmbedder(AbstractEncoder): |
|
"""Uses the CLIP transformer encoder for text (from huggingface)""" |
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): |
|
super().__init__() |
|
self.tokenizer = CLIPTokenizer.from_pretrained(version) |
|
self.transformer = CLIPTextModel.from_pretrained(version) |
|
self.device = device |
|
self.max_length = max_length |
|
self.freeze() |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
outputs = self.transformer(input_ids=tokens) |
|
|
|
z = outputs.last_hidden_state |
|
return z |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
import torch.nn.functional as F |
|
from transformers import CLIPVisionModel |
|
class ClipImageProjector(AbstractEncoder): |
|
""" |
|
Uses the CLIP image encoder. |
|
""" |
|
def __init__(self, version="openai/clip-vit-large-patch14", max_length=77): |
|
super().__init__() |
|
self.model = CLIPVisionModel.from_pretrained(version) |
|
self.model.train() |
|
self.max_length = max_length |
|
self.antialias = True |
|
self.mapper = torch.nn.Linear(1024, 768) |
|
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) |
|
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) |
|
null_cond = self.get_null_cond(version, max_length) |
|
self.register_buffer('null_cond', null_cond) |
|
|
|
@torch.no_grad() |
|
def get_null_cond(self, version, max_length): |
|
device = self.mean.device |
|
embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length) |
|
null_cond = embedder([""]) |
|
return null_cond |
|
|
|
def preprocess(self, x): |
|
|
|
x = kornia.geometry.resize(x, (224, 224), |
|
interpolation='bicubic',align_corners=True, |
|
antialias=self.antialias) |
|
x = (x + 1.) / 2. |
|
|
|
x = kornia.enhance.normalize(x, self.mean, self.std) |
|
return x |
|
|
|
def forward(self, x): |
|
if isinstance(x, list): |
|
return self.null_cond |
|
|
|
x = self.preprocess(x) |
|
outputs = self.model(pixel_values=x) |
|
last_hidden_state = outputs.last_hidden_state |
|
last_hidden_state = self.mapper(last_hidden_state) |
|
return F.pad(last_hidden_state, [0,0, 0,self.max_length-last_hidden_state.shape[1], 0,0]) |
|
|
|
def encode(self, im): |
|
return self(im) |
|
|
|
class ProjectedFrozenCLIPEmbedder(AbstractEncoder): |
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): |
|
super().__init__() |
|
self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length) |
|
self.projection = torch.nn.Linear(768, 768) |
|
|
|
def forward(self, text): |
|
z = self.embedder(text) |
|
return self.projection(z) |
|
|
|
def encode(self, text): |
|
return self(text) |
|
|
|
class FrozenCLIPImageEmbedder(AbstractEncoder): |
|
""" |
|
Uses the CLIP image encoder. |
|
Not actually frozen... If you want that set cond_stage_trainable=False in cfg |
|
""" |
|
def __init__( |
|
self, |
|
model='ViT-L/14', |
|
jit=False, |
|
device='cpu', |
|
antialias=False, |
|
): |
|
super().__init__() |
|
self.model, _ = clip.load(name=model, device=device, jit=jit) |
|
|
|
del self.model.transformer |
|
self.antialias = antialias |
|
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) |
|
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) |
|
|
|
def preprocess(self, x): |
|
|
|
x = kornia.geometry.resize(x, (224, 224), |
|
interpolation='bicubic',align_corners=True, |
|
antialias=self.antialias) |
|
x = (x + 1.) / 2. |
|
|
|
x = kornia.enhance.normalize(x, self.mean, self.std) |
|
return x |
|
|
|
def forward(self, x): |
|
|
|
if isinstance(x, list): |
|
|
|
device = self.model.visual.conv1.weight.device |
|
return torch.zeros(1, 768, device=device) |
|
return self.model.encode_image(self.preprocess(x)).float() |
|
|
|
def encode(self, im): |
|
return self(im).unsqueeze(1) |
|
|
|
from torchvision import transforms |
|
import random |
|
|
|
class FrozenCLIPImageMutliEmbedder(AbstractEncoder): |
|
""" |
|
Uses the CLIP image encoder. |
|
Not actually frozen... If you want that set cond_stage_trainable=False in cfg |
|
""" |
|
def __init__( |
|
self, |
|
model='ViT-L/14', |
|
jit=False, |
|
device='cpu', |
|
antialias=True, |
|
max_crops=5, |
|
): |
|
super().__init__() |
|
self.model, _ = clip.load(name=model, device=device, jit=jit) |
|
|
|
del self.model.transformer |
|
self.antialias = antialias |
|
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) |
|
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) |
|
self.max_crops = max_crops |
|
|
|
def preprocess(self, x): |
|
|
|
|
|
randcrop = transforms.RandomResizedCrop(224, scale=(0.085, 1.0), ratio=(1,1)) |
|
max_crops = self.max_crops |
|
patches = [] |
|
crops = [randcrop(x) for _ in range(max_crops)] |
|
patches.extend(crops) |
|
x = torch.cat(patches, dim=0) |
|
x = (x + 1.) / 2. |
|
|
|
x = kornia.enhance.normalize(x, self.mean, self.std) |
|
return x |
|
|
|
def forward(self, x): |
|
|
|
if isinstance(x, list): |
|
|
|
device = self.model.visual.conv1.weight.device |
|
return torch.zeros(1, self.max_crops, 768, device=device) |
|
batch_tokens = [] |
|
for im in x: |
|
patches = self.preprocess(im.unsqueeze(0)) |
|
tokens = self.model.encode_image(patches).float() |
|
for t in tokens: |
|
if random.random() < 0.1: |
|
t *= 0 |
|
batch_tokens.append(tokens.unsqueeze(0)) |
|
|
|
return torch.cat(batch_tokens, dim=0) |
|
|
|
def encode(self, im): |
|
return self(im) |
|
|
|
class SpatialRescaler(nn.Module): |
|
def __init__(self, |
|
n_stages=1, |
|
method='bilinear', |
|
multiplier=0.5, |
|
in_channels=3, |
|
out_channels=None, |
|
bias=False): |
|
super().__init__() |
|
self.n_stages = n_stages |
|
assert self.n_stages >= 0 |
|
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] |
|
self.multiplier = multiplier |
|
self.interpolator = partial(torch.nn.functional.interpolate, mode=method) |
|
self.remap_output = out_channels is not None |
|
if self.remap_output: |
|
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') |
|
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) |
|
|
|
def forward(self,x): |
|
for stage in range(self.n_stages): |
|
x = self.interpolator(x, scale_factor=self.multiplier) |
|
|
|
|
|
if self.remap_output: |
|
x = self.channel_mapper(x) |
|
return x |
|
|
|
def encode(self, x): |
|
return self(x) |
|
|
|
|
|
from ldm.util import instantiate_from_config |
|
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like |
|
|
|
|
|
class LowScaleEncoder(nn.Module): |
|
def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64, |
|
scale_factor=1.0): |
|
super().__init__() |
|
self.max_noise_level = max_noise_level |
|
self.model = instantiate_from_config(model_config) |
|
self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start, |
|
linear_end=linear_end) |
|
self.out_size = output_size |
|
self.scale_factor = scale_factor |
|
|
|
def register_schedule(self, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, |
|
cosine_s=cosine_s) |
|
alphas = 1. - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) |
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' |
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
self.register_buffer('betas', to_torch(betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) |
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) |
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) |
|
|
|
def forward(self, x): |
|
z = self.model.encode(x).sample() |
|
z = z * self.scale_factor |
|
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() |
|
z = self.q_sample(z, noise_level) |
|
if self.out_size is not None: |
|
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") |
|
|
|
return z, noise_level |
|
|
|
def decode(self, z): |
|
z = z / self.scale_factor |
|
return self.model.decode(z) |
|
|
|
|
|
if __name__ == "__main__": |
|
from ldm.util import count_params |
|
sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"] |
|
model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda() |
|
count_params(model, True) |
|
z = model(sentences) |
|
print(z.shape) |
|
|
|
model = FrozenCLIPEmbedder().cuda() |
|
count_params(model, True) |
|
z = model(sentences) |
|
print(z.shape) |
|
|
|
print("done.") |
|
|