OneFineStarstuff commited on
Commit
3f2b233
โ€ข
1 Parent(s): 9cb1630

Create Custom ResNet SHAP

Browse files
Files changed (1) hide show
  1. Custom ResNet SHAP +126 -0
Custom ResNet SHAP ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import shap
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torchvision import models
6
+ import numpy as np
7
+ import matplotlib.pyplot as plt
8
+
9
+ # Custom BasicBlock to avoid in-place operations
10
+ class CustomBasicBlock(nn.Module):
11
+ expansion = 1
12
+
13
+ def __init__(self, in_planes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None):
14
+ super(CustomBasicBlock, self).__init__()
15
+ if norm_layer is None:
16
+ norm_layer = nn.BatchNorm2d
17
+ self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
18
+ self.bn1 = norm_layer(planes)
19
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
20
+ self.bn2 = norm_layer(planes)
21
+ self.downsample = downsample
22
+ self.stride = stride
23
+
24
+ def forward(self, x):
25
+ identity = x.clone()
26
+
27
+ out = self.conv1(x)
28
+ out = self.bn1(out)
29
+ out = F.relu(out.clone(), inplace=False)
30
+
31
+ out = self.conv2(out)
32
+ out = self.bn2(out)
33
+
34
+ if self.downsample is not None:
35
+ identity = self.downsample(x.clone())
36
+
37
+ out = out.clone() + identity # Clone before addition to avoid in-place modification
38
+ out = F.relu(out.clone(), inplace=False)
39
+
40
+ return out
41
+
42
+ # Custom ResNet using CustomBasicBlock
43
+ class CustomResNet(nn.Module):
44
+ def __init__(self, block, layers, num_classes=1000):
45
+ super(CustomResNet, self).__init__()
46
+ self.inplanes = 64
47
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
48
+ self.bn1 = nn.BatchNorm2d(64)
49
+ self.relu = nn.ReLU(inplace=False)
50
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
51
+ self.layer1 = self._make_layer(block, 64, layers[0])
52
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
53
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
54
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
55
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
56
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
57
+
58
+ for m in self.modules():
59
+ if isinstance(m, nn.Conv2d):
60
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
61
+ elif isinstance(m, nn.BatchNorm2d):
62
+ nn.init.constant_(m.weight, 1)
63
+ nn.init.constant_(m.bias, 0)
64
+
65
+ def _make_layer(self, block, planes, blocks, stride=1):
66
+ norm_layer = nn.BatchNorm2d
67
+ downsample = None
68
+ if stride != 1 or self.inplanes != planes * block.expansion:
69
+ downsample = nn.Sequential(
70
+ nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
71
+ norm_layer(planes * block.expansion),
72
+ )
73
+
74
+ layers = []
75
+ layers.append(block(self.inplanes, planes, stride, downsample, groups=1, base_width=64, dilation=1, norm_layer=norm_layer))
76
+ self.inplanes = planes * block.expansion
77
+ for _ in range(1, blocks):
78
+ layers.append(block(self.inplanes, planes, groups=1, base_width=64, dilation=1, norm_layer=norm_layer))
79
+
80
+ return nn.Sequential(*layers)
81
+
82
+ def forward(self, x):
83
+ x = self.conv1(x)
84
+ x = self.bn1(x)
85
+ x = self.relu(x.clone()) # Clone to avoid in-place operation
86
+ x = self.maxpool(x)
87
+
88
+ x = self.layer1(x.clone()) # Clone to avoid in-place operation
89
+ x = self.layer2(x.clone()) # Clone to avoid in-place operation
90
+ x = self.layer3(x.clone()) # Clone to avoid in-place operation
91
+ x = self.layer4(x.clone()) # Clone to avoid in-place operation
92
+
93
+ x = self.avgpool(x)
94
+ x = torch.flatten(x, 1)
95
+ x = self.fc(x.clone()) # Clone to avoid in-place operation
96
+
97
+ return x
98
+
99
+ # Initialize the custom model with pre-trained weights
100
+ model = CustomResNet(CustomBasicBlock, [2, 2, 2, 2])
101
+ state_dict = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1).state_dict()
102
+ model.load_state_dict(state_dict)
103
+ model.eval()
104
+
105
+ # Initialize SHAP explainer with the custom model
106
+ explainer = shap.DeepExplainer(model, torch.randn(1, 3, 224, 224))
107
+
108
+ # Generate SHAP values for an input image
109
+ sample_image = torch.randn(1, 3, 224, 224)
110
+ shap_values = explainer.shap_values(sample_image, check_additivity=False)
111
+
112
+ # Convert SHAP values and sample image to numpy for SHAP visualization
113
+ shap_values_class_0 = shap_values[0][0] # Extract SHAP values for the first class
114
+ sample_image_np = sample_image.squeeze().permute(1, 2, 0).detach().numpy()
115
+
116
+ # Normalize sample image and SHAP values to range [0, 1] for visualization
117
+ sample_image_np = np.clip(sample_image_np, 0, 1)
118
+ shap_min, shap_max = shap_values_class_0.min(), shap_values_class_0.max()
119
+ shap_values_class_0 = (shap_values_class_0 - shap_min) / (shap_max - shap_min)
120
+
121
+ # Ensure both `sample_image_np` and `shap_values_class_0` are NumPy arrays with correct shapes for image_plot
122
+ sample_image_np = np.array([sample_image_np]) # Add batch dimension for SHAP
123
+ shap_values_class_0 = np.array([shap_values_class_0]) # Add batch dimension for SHAP
124
+
125
+ # Visualize SHAP values for the first class
126
+ shap.image_plot(shap_values_class_0, sample_image_np)