import shap import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models import numpy as np import matplotlib.pyplot as plt # Custom BasicBlock to avoid in-place operations class CustomBasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(CustomBasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = norm_layer(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x.clone() out = self.conv1(x) out = self.bn1(out) out = F.relu(out.clone(), inplace=False) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x.clone()) out = out.clone() + identity # Clone before addition to avoid in-place modification out = F.relu(out.clone(), inplace=False) return out # Custom ResNet using CustomBasicBlock class CustomResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): super(CustomResNet, self).__init__() self.inplanes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=False) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1): norm_layer = nn.BatchNorm2d downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, groups=1, base_width=64, dilation=1, norm_layer=norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=1, base_width=64, dilation=1, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x.clone()) # Clone to avoid in-place operation x = self.maxpool(x) x = self.layer1(x.clone()) # Clone to avoid in-place operation x = self.layer2(x.clone()) # Clone to avoid in-place operation x = self.layer3(x.clone()) # Clone to avoid in-place operation x = self.layer4(x.clone()) # Clone to avoid in-place operation x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x.clone()) # Clone to avoid in-place operation return x # Initialize the custom model with pre-trained weights model = CustomResNet(CustomBasicBlock, [2, 2, 2, 2]) state_dict = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1).state_dict() model.load_state_dict(state_dict) model.eval() # Initialize SHAP explainer with the custom model explainer = shap.DeepExplainer(model, torch.randn(1, 3, 224, 224)) # Generate SHAP values for an input image sample_image = torch.randn(1, 3, 224, 224) shap_values = explainer.shap_values(sample_image, check_additivity=False) # Convert SHAP values and sample image to numpy for SHAP visualization shap_values_class_0 = shap_values[0][0] # Extract SHAP values for the first class sample_image_np = sample_image.squeeze().permute(1, 2, 0).detach().numpy() # Normalize sample image and SHAP values to range [0, 1] for visualization sample_image_np = np.clip(sample_image_np, 0, 1) shap_min, shap_max = shap_values_class_0.min(), shap_values_class_0.max() shap_values_class_0 = (shap_values_class_0 - shap_min) / (shap_max - shap_min) # Ensure both `sample_image_np` and `shap_values_class_0` are NumPy arrays with correct shapes for image_plot sample_image_np = np.array([sample_image_np]) # Add batch dimension for SHAP shap_values_class_0 = np.array([shap_values_class_0]) # Add batch dimension for SHAP # Visualize SHAP values for the first class shap.image_plot(shap_values_class_0, sample_image_np)