--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-v-mesh-0 results: [] --- # segformer-v-mesh-0 This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the Onegafer/vehicle_segmentation dataset. It achieves the following results on the evaluation set: - Loss: 0.3350 - Mean Iou: 0.3373 - Mean Accuracy: 0.6746 - Overall Accuracy: 0.6746 - Accuracy Background: nan - Accuracy Windows: 0.6746 - Iou Background: 0.0 - Iou Windows: 0.6746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Windows | Iou Background | Iou Windows | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:| | 0.4394 | 0.16 | 20 | 0.3350 | 0.3373 | 0.6746 | 0.6746 | nan | 0.6746 | 0.0 | 0.6746 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3