Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
type: LunarLander-v2
|
22 |
metrics:
|
23 |
- type: mean_reward
|
24 |
-
value:
|
25 |
name: mean_reward
|
26 |
---
|
27 |
|
@@ -129,7 +129,7 @@ from huggingface_ding import push_model_to_hub
|
|
129 |
# Instantiate the agent
|
130 |
agent = EfficientZeroAgent(env_id="LunarLander-v2", exp_name="LunarLander-v2-EfficientZero")
|
131 |
# Train the agent
|
132 |
-
return_ = agent.train(step=int(
|
133 |
# Push model to huggingface hub
|
134 |
push_model_to_hub(
|
135 |
agent=agent.best,
|
@@ -149,7 +149,7 @@ pip3 install LightZero
|
|
149 |
repo_id="OpenDILabCommunity/LunarLander-v2-EfficientZero",
|
150 |
platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
|
151 |
model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
|
152 |
-
create_repo=
|
153 |
)
|
154 |
|
155 |
```
|
@@ -291,7 +291,7 @@ exp_config = {
|
|
291 |
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLander-v2-EfficientZero/blob/main/replay.mp4)
|
292 |
<!-- Provide the size information for the model. -->
|
293 |
- **Parameters total size:** 17535.39 KB
|
294 |
-
- **Last Update Date:** 2024-01-
|
295 |
|
296 |
## Environments
|
297 |
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|
|
|
21 |
type: LunarLander-v2
|
22 |
metrics:
|
23 |
- type: mean_reward
|
24 |
+
value: 163.44 +/- 97.96
|
25 |
name: mean_reward
|
26 |
---
|
27 |
|
|
|
129 |
# Instantiate the agent
|
130 |
agent = EfficientZeroAgent(env_id="LunarLander-v2", exp_name="LunarLander-v2-EfficientZero")
|
131 |
# Train the agent
|
132 |
+
return_ = agent.train(step=int(20000000))
|
133 |
# Push model to huggingface hub
|
134 |
push_model_to_hub(
|
135 |
agent=agent.best,
|
|
|
149 |
repo_id="OpenDILabCommunity/LunarLander-v2-EfficientZero",
|
150 |
platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
|
151 |
model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
|
152 |
+
create_repo=False
|
153 |
)
|
154 |
|
155 |
```
|
|
|
291 |
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLander-v2-EfficientZero/blob/main/replay.mp4)
|
292 |
<!-- Provide the size information for the model. -->
|
293 |
- **Parameters total size:** 17535.39 KB
|
294 |
+
- **Last Update Date:** 2024-01-17
|
295 |
|
296 |
## Environments
|
297 |
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
|