zjowowen commited on
Commit
36c039c
1 Parent(s): e62d757

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  type: LunarLander-v2
22
  metrics:
23
  - type: mean_reward
24
- value: 104.86 +/- 67.1
25
  name: mean_reward
26
  ---
27
 
@@ -129,7 +129,7 @@ from huggingface_ding import push_model_to_hub
129
  # Instantiate the agent
130
  agent = EfficientZeroAgent(env_id="LunarLander-v2", exp_name="LunarLander-v2-EfficientZero")
131
  # Train the agent
132
- return_ = agent.train(step=int(5000000))
133
  # Push model to huggingface hub
134
  push_model_to_hub(
135
  agent=agent.best,
@@ -149,7 +149,7 @@ pip3 install LightZero
149
  repo_id="OpenDILabCommunity/LunarLander-v2-EfficientZero",
150
  platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
151
  model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
152
- create_repo=True
153
  )
154
 
155
  ```
@@ -291,7 +291,7 @@ exp_config = {
291
  - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLander-v2-EfficientZero/blob/main/replay.mp4)
292
  <!-- Provide the size information for the model. -->
293
  - **Parameters total size:** 17535.39 KB
294
- - **Last Update Date:** 2024-01-09
295
 
296
  ## Environments
297
  <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
 
21
  type: LunarLander-v2
22
  metrics:
23
  - type: mean_reward
24
+ value: 163.44 +/- 97.96
25
  name: mean_reward
26
  ---
27
 
 
129
  # Instantiate the agent
130
  agent = EfficientZeroAgent(env_id="LunarLander-v2", exp_name="LunarLander-v2-EfficientZero")
131
  # Train the agent
132
+ return_ = agent.train(step=int(20000000))
133
  # Push model to huggingface hub
134
  push_model_to_hub(
135
  agent=agent.best,
 
149
  repo_id="OpenDILabCommunity/LunarLander-v2-EfficientZero",
150
  platform_info="[LightZero](https://github.com/opendilab/LightZero) and [DI-engine](https://github.com/opendilab/di-engine)",
151
  model_description="**LightZero** is an efficient, easy-to-understand open-source toolkit that merges Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (RL), simplifying their integration for developers and researchers. More details are in paper [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://huggingface.co/papers/2310.08348).",
152
+ create_repo=False
153
  )
154
 
155
  ```
 
291
  - **Demo:** [video](https://huggingface.co/OpenDILabCommunity/LunarLander-v2-EfficientZero/blob/main/replay.mp4)
292
  <!-- Provide the size information for the model. -->
293
  - **Parameters total size:** 17535.39 KB
294
+ - **Last Update Date:** 2024-01-17
295
 
296
  ## Environments
297
  <!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->