File size: 4,638 Bytes
673d516
 
acd8abb
673d516
acd8abb
673d516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6351081
673d516
6351081
673d516
 
 
bba800e
673d516
 
 
bba800e
673d516
bba800e
 
ef43f6e
 
bba800e
673d516
bba800e
673d516
 
 
 
 
 
bba800e
 
 
 
 
 
 
 
 
 
ef43f6e
673d516
 
ef43f6e
673d516
 
ef43f6e
673d516
bba800e
 
 
 
ef43f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673d516
 
ef43f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: mit
pipeline_tag: image-text-to-text
---

<div align="center">
  <img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
</div>

# INT4 Weight-only Quantization and Deployment (W4A16)

LMDeploy adopts [AWQ](https://arxiv.org/abs/2306.00978) algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.

LMDeploy supports the following NVIDIA GPU for W4A16 inference:

- Turing(sm75): 20 series, T4

- Ampere(sm80,sm86): 30 series, A10, A16, A30, A100

- Ada Lovelace(sm90): 40 series

Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.

```shell
pip install lmdeploy[all]
```

This article comprises the following sections:

<!-- toc -->

- [Inference](#inference)
- [Service](#service)

<!-- tocstop -->

## Inference

Trying the following codes, you can perform the batched offline inference with the quantized model:

```python
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image

model = 'OpenGVLab/InternVL2-2B-AWQ'
system_prompt = '我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
chat_template_config = ChatTemplateConfig('internvl-internlm2')
chat_template_config.meta_instruction = system_prompt
backend_config = TurbomindEngineConfig(model_format='awq')
pipe = pipeline(model, chat_template_config=chat_template_config,
                backend_config=backend_config))
response = pipe(('describe this image', image))
print(response.text)
```

For more information about the pipeline parameters, please refer to [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/inference/pipeline.md).

## Service

To deploy InternVL2 as an API, please configure the chat template config first. Create the following JSON file `chat_template.json`.

```json
{
    "model_name":"internvl-internlm2",
    "meta_instruction":"我是书生·万象,英文名是InternVL,是由上海人工智能实验室及多家合作单位联合开发的多模态大语言模型。",
    "stop_words":["<|im_start|>", "<|im_end|>"]
}
```

LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup.

```shell
lmdeploy serve api_server OpenGVLab/InternVL2-2B-AWQ --model-name InternVL2-2B-AWQ --backend turbomind --server-port 23333 --model-format awq --chat-template chat_template.json
```

To use the OpenAI-style interface, you need to install OpenAI:

```shell
pip install openai
```

Then, use the code below to make the API call:

```python
from openai import OpenAI

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model="InternVL2-2B-AWQ",
    messages=[{
        'role':
        'user',
        'content': [{
            'type': 'text',
            'text': 'describe this image',
        }, {
            'type': 'image_url',
            'image_url': {
                'url':
                'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
            },
        }],
    }],
    temperature=0.8,
    top_p=0.8)
print(response)
```

## License

This project is released under the MIT license, while InternLM is licensed under the Apache-2.0 license.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
```