Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -76,6 +76,7 @@ We also welcome you to experience the InternVL2 series models in our [online dem
|
|
76 |
> Please use transformers==4.37.2 to ensure the model works normally.
|
77 |
|
78 |
```python
|
|
|
79 |
import numpy as np
|
80 |
import torch
|
81 |
import torchvision.transforms as T
|
@@ -163,17 +164,44 @@ def load_image(image_file, input_size=448, max_num=6):
|
|
163 |
return pixel_values
|
164 |
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
path = 'OpenGVLab/InternVL2-40B'
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
170 |
model = AutoModel.from_pretrained(
|
171 |
path,
|
172 |
torch_dtype=torch.bfloat16,
|
|
|
173 |
low_cpu_mem_usage=True,
|
174 |
trust_remote_code=True,
|
175 |
-
device_map=
|
176 |
-
|
177 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
178 |
# set the max number of tiles in `max_num`
|
179 |
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
@@ -317,6 +345,10 @@ print(f'User: {question}')
|
|
317 |
print(f'Assistant: {response}')
|
318 |
```
|
319 |
|
|
|
|
|
|
|
|
|
320 |
## Deployment
|
321 |
|
322 |
### LMDeploy
|
@@ -575,6 +607,10 @@ InternVL 2.0 是一个多模态大语言模型系列,包含各种规模的模
|
|
575 |
|
576 |
示例代码请[点击这里](#quick-start)。
|
577 |
|
|
|
|
|
|
|
|
|
578 |
## 部署
|
579 |
|
580 |
### LMDeploy
|
|
|
76 |
> Please use transformers==4.37.2 to ensure the model works normally.
|
77 |
|
78 |
```python
|
79 |
+
import math
|
80 |
import numpy as np
|
81 |
import torch
|
82 |
import torchvision.transforms as T
|
|
|
164 |
return pixel_values
|
165 |
|
166 |
|
167 |
+
def split_model(model_name):
|
168 |
+
device_map = {}
|
169 |
+
world_size = torch.cuda.device_count()
|
170 |
+
num_layers = {'InternVL2-8B': 32, 'InternVL2-26B': 48,
|
171 |
+
'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
|
172 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
173 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
174 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
175 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
176 |
+
layer_cnt = 0
|
177 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
178 |
+
for j in range(num_layer):
|
179 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
180 |
+
layer_cnt += 1
|
181 |
+
device_map['vision_model'] = 0
|
182 |
+
device_map['mlp1'] = 0
|
183 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
184 |
+
device_map['language_model.model.embed_tokens'] = 0
|
185 |
+
device_map['language_model.output'] = 0
|
186 |
+
device_map['language_model.model.norm'] = 0
|
187 |
+
device_map['language_model.lm_head'] = 0
|
188 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
189 |
+
|
190 |
+
return device_map
|
191 |
+
|
192 |
+
|
193 |
path = 'OpenGVLab/InternVL2-40B'
|
194 |
+
device_map = split_model('InternVL2-40B')
|
195 |
+
print(device_map)
|
196 |
+
# If you set `load_in_8bit=True`, you will need one 80GB GPUs.
|
197 |
+
# If you set `load_in_8bit=False`, you will need at least two 80GB GPUs.
|
198 |
model = AutoModel.from_pretrained(
|
199 |
path,
|
200 |
torch_dtype=torch.bfloat16,
|
201 |
+
load_in_8bit=True,
|
202 |
low_cpu_mem_usage=True,
|
203 |
trust_remote_code=True,
|
204 |
+
device_map=device_map).eval()
|
|
|
205 |
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
206 |
# set the max number of tiles in `max_num`
|
207 |
pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
|
|
|
345 |
print(f'Assistant: {response}')
|
346 |
```
|
347 |
|
348 |
+
## Finetune
|
349 |
+
|
350 |
+
SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of InternVL, please check [this link](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md) for more details.
|
351 |
+
|
352 |
## Deployment
|
353 |
|
354 |
### LMDeploy
|
|
|
607 |
|
608 |
示例代码请[点击这里](#quick-start)。
|
609 |
|
610 |
+
## 微调
|
611 |
+
|
612 |
+
来自ModelScope社区的SWIFT已经支持对InternVL进行微调(图像/视频),详情请查看[此链接](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md)。
|
613 |
+
|
614 |
## 部署
|
615 |
|
616 |
### LMDeploy
|