Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- LICENSE +51 -0
- README.md +660 -0
- added_tokens.json +33 -0
- config.json +196 -0
- configuration_intern_vit.py +120 -0
- configuration_internvl_chat.py +95 -0
- conversation.py +391 -0
- examples/image1.jpg +0 -0
- examples/image2.jpg +0 -0
- examples/red-panda.mp4 +3 -0
- generation_config.json +8 -0
- merges.txt +0 -0
- model-00001-of-00033.safetensors +3 -0
- model-00002-of-00033.safetensors +3 -0
- model-00003-of-00033.safetensors +3 -0
- model-00004-of-00033.safetensors +3 -0
- model-00005-of-00033.safetensors +3 -0
- model-00006-of-00033.safetensors +3 -0
- model-00007-of-00033.safetensors +3 -0
- model-00008-of-00033.safetensors +3 -0
- model-00009-of-00033.safetensors +3 -0
- model-00010-of-00033.safetensors +3 -0
- model-00011-of-00033.safetensors +3 -0
- model-00012-of-00033.safetensors +3 -0
- model-00013-of-00033.safetensors +3 -0
- model-00014-of-00033.safetensors +3 -0
- model-00015-of-00033.safetensors +3 -0
- model-00016-of-00033.safetensors +3 -0
- model-00017-of-00033.safetensors +3 -0
- model-00018-of-00033.safetensors +3 -0
- model-00019-of-00033.safetensors +3 -0
- model-00020-of-00033.safetensors +3 -0
- model-00021-of-00033.safetensors +3 -0
- model-00022-of-00033.safetensors +3 -0
- model-00023-of-00033.safetensors +3 -0
- model-00024-of-00033.safetensors +3 -0
- model-00025-of-00033.safetensors +3 -0
- model-00026-of-00033.safetensors +3 -0
- model-00027-of-00033.safetensors +3 -0
- model-00028-of-00033.safetensors +3 -0
- model-00029-of-00033.safetensors +3 -0
- model-00030-of-00033.safetensors +3 -0
- model-00031-of-00033.safetensors +3 -0
- model-00032-of-00033.safetensors +3 -0
- model-00033-of-00033.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_intern_vit.py +430 -0
- modeling_internvl_chat.py +348 -0
- runs/Dec20_01-31-43_HOST-10-140-60-152/events.out.tfevents.1734630163.HOST-10-140-60-152.111402.0 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Qwen LICENSE AGREEMENT
|
2 |
+
|
3 |
+
Qwen LICENSE AGREEMENT Release Date: September 19, 2024
|
4 |
+
|
5 |
+
By clicking to agree or by using or distributing any portion or element of the Qwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
|
6 |
+
|
7 |
+
1. Definitions
|
8 |
+
a. This Qwen LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
|
9 |
+
b. "We" (or "Us") shall mean Alibaba Cloud.
|
10 |
+
c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
|
11 |
+
d. "Third Parties" shall mean individuals or legal entities that are not under common control with us or you.
|
12 |
+
e. "Qwen" shall mean the large language models, and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by us.
|
13 |
+
f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Qwen and Documentation (and any portion thereof) made available under this Agreement.
|
14 |
+
g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
|
15 |
+
h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
|
16 |
+
|
17 |
+
2. Grant of Rights
|
18 |
+
You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
|
19 |
+
|
20 |
+
3. Redistribution
|
21 |
+
You may distribute copies or make the Materials, or derivative works thereof, available as part of a product or service that contains any of them, with or without modifications, and in Source or Object form, provided that you meet the following conditions:
|
22 |
+
a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
|
23 |
+
b. You shall cause any modified files to carry prominent notices stating that you changed the files;
|
24 |
+
c. You shall retain in all copies of the Materials that you distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Qwen is licensed under the Qwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
|
25 |
+
d. You may add your own copyright statement to your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of your modifications, or for any such derivative works as a whole, provided your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
|
26 |
+
|
27 |
+
4. Restrictions
|
28 |
+
If you are commercially using the Materials, and your product or service has more than 100 million monthly active users, you shall request a license from us. You cannot exercise your rights under this Agreement without our express authorization.
|
29 |
+
|
30 |
+
5. Rules of use
|
31 |
+
a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
|
32 |
+
b. If you use the Materials or any outputs or results therefrom to create, train, fine-tune, or improve an AI model that is distributed or made available, you shall prominently display “Built with Qwen” or “Improved using Qwen” in the related product documentation.
|
33 |
+
|
34 |
+
6. Intellectual Property
|
35 |
+
a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
|
36 |
+
b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
|
37 |
+
c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licenses granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
|
38 |
+
|
39 |
+
7. Disclaimer of Warranty and Limitation of Liability
|
40 |
+
a. We are not obligated to support, update, provide training for, or develop any further version of the Qwen Materials or to grant any license thereto.
|
41 |
+
b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
|
42 |
+
c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
|
43 |
+
d. You will defend, indemnify and hold harmless us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
|
44 |
+
|
45 |
+
8. Survival and Termination.
|
46 |
+
a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
|
47 |
+
b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 7 and 9 shall survive the termination of this Agreement.
|
48 |
+
|
49 |
+
9. Governing Law and Jurisdiction.
|
50 |
+
a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
|
51 |
+
b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
|
README.md
ADDED
@@ -0,0 +1,660 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
library_name: transformers
|
5 |
+
base_model:
|
6 |
+
- OpenGVLab/InternVL2_5-78B
|
7 |
+
base_model_relation: finetune
|
8 |
+
datasets:
|
9 |
+
- OpenGVLab/MMPR-v1.1
|
10 |
+
language:
|
11 |
+
- multilingual
|
12 |
+
tags:
|
13 |
+
- internvl
|
14 |
+
- custom_code
|
15 |
+
---
|
16 |
+
|
17 |
+
# InternVL2_5-78B-MPO
|
18 |
+
|
19 |
+
[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442)
|
20 |
+
|
21 |
+
[\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
|
22 |
+
|
23 |
+
<div align="center">
|
24 |
+
<img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
|
25 |
+
</div>
|
26 |
+
|
27 |
+
## Introduction
|
28 |
+
|
29 |
+
We introduce InternVL2.5-MPO, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance. This series builds upon InternVL2.5 and Mixed Preference Optimization.
|
30 |
+
|
31 |
+
![image/png](https://internvl.github.io/blog/2024-12-20-InternVL-2.5-MPO/images/overview_performance.png)
|
32 |
+
|
33 |
+
## InternVL 2.5 Family
|
34 |
+
|
35 |
+
In the following table, we provide an overview of the InternVL2.5-MPO series.
|
36 |
+
|
37 |
+
| Model Name | Vision Part | Language Part | HF Link |
|
38 |
+
| :-----------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :------------------------------------------------------------: |
|
39 |
+
| InternVL2_5-1B-MPO | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-1B-MPO) |
|
40 |
+
| InternVL2_5-2B-MPO | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-2B-MPO) |
|
41 |
+
| InternVL2_5-4B-MPO | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-4B-MPO) |
|
42 |
+
| InternVL2_5-8B-MPO | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-8B-MPO) |
|
43 |
+
| InternVL2_5-26B-MPO | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-26B-MPO) |
|
44 |
+
| InternVL2_5-38B-MPO | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-38B-MPO) |
|
45 |
+
| InternVL2_5-78B-MPO | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-78B-MPO) |
|
46 |
+
|
47 |
+
## Model Architecture
|
48 |
+
|
49 |
+
As shown in the following figure, [InternVL2.5-MPO](https://internvl.github.io/blog/2024-12-20-InternVL-2.5-MPO/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 2.5 and Qwen 2.5, using a randomly initialized MLP projector.
|
50 |
+
|
51 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
|
52 |
+
|
53 |
+
As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
|
54 |
+
|
55 |
+
## Key Designs
|
56 |
+
|
57 |
+
### Multi-Modal Preference Dataset
|
58 |
+
|
59 |
+
MMPR is a large-scale and high-quality multimodal reasoning preference dataset. This dataset includes about 3 million samples.
|
60 |
+
|
61 |
+
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/mmXL47UPDFwYOWdn9Z6j5.jpeg)
|
62 |
+
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/619507e7b74b6c591f794340/6fnvI_wCd9JXAs6vYthaG.jpeg)
|
63 |
+
|
64 |
+
To construct this dataset, we propose an efficient data construction pipeline. Specifically, we categorize the multimodal data into **samples with clear ground truths** and **samples without clear ground truths**.
|
65 |
+
|
66 |
+
- **For samples with clear ground truths:**
|
67 |
+
the model is prompted to first provide the reasoning process and then give the final answer in the format like `Final Answer: ***`.
|
68 |
+
Responses matching the ground truth answer constitute the positive set $\mathcal{Y}_p$, while those that do not match make up the negative set $\mathcal{Y}_n$. Additionally, responses that fail to provide a clear final answer are also merged into $\mathcal{Y}_n$.
|
69 |
+
Given these responses labeled as positive or negative, we build the preference pairs by selecting a chosen response $y_c$ from $\mathcal{Y}_p$ and a negative response $y_r$ from $\mathcal{Y}_n$.
|
70 |
+
|
71 |
+
- **For samples without clear ground truths:**
|
72 |
+
we propose a simple yet effective method: Dropout Next-Token Prediction (Dropout NTP).
|
73 |
+
Specifically, we use the responses generated by InternVL2-8B as chosen answers.
|
74 |
+
Given the chosen answer, we truncate it by half and then prompt InternVL2-8B to complete the remaining
|
75 |
+
portion of the truncated answer without access to the image input.
|
76 |
+
This generated completion serves as the rejected answer for the paired sample.
|
77 |
+
It is worth noting that while the responses generated by InternVL2-8B may not be perfect,
|
78 |
+
the completions generated without the image input will introduce more hallucinations than those
|
79 |
+
generated with the image input.
|
80 |
+
Therefore, the partial order relationship between the chosen and rejected responses holds true.
|
81 |
+
|
82 |
+
The data construction pipeline is open-sourced, see more details in our [document](https://internvl.readthedocs.io/en/latest/internvl2.0/preference_optimization.html#generate-additional-preference-data).
|
83 |
+
|
84 |
+
|
85 |
+
### Mixed Preference Optimization
|
86 |
+
|
87 |
+
The key insight behind MPO is that *an effective PO process should enable the model to learn the relative preference between pairs of responses, the absolute quality of individual responses, and the process for generating preferred responses.* We define the training objective as a combination of
|
88 |
+
preference loss $\mathcal{L}_{\text{p}}$,
|
89 |
+
quality loss $\mathcal{L}_{\text{q}}$,
|
90 |
+
and generation loss $\mathcal{L}_{\text{g}}$,
|
91 |
+
referred to as Mixed Preference Optimization:
|
92 |
+
|
93 |
+
$$
|
94 |
+
\mathcal{L}=w_{p}\cdot\mathcal{L}_{\text{p}} + w_{q}\cdot\mathcal{L}_{\text{q}} + w_{g}\cdot\mathcal{L}_{\text{g}},
|
95 |
+
$$
|
96 |
+
|
97 |
+
where $w_{*}$ represents the weight assigned to each loss component.
|
98 |
+
In this work, we empirically compare different variants of preference loss.
|
99 |
+
Based on the experimental results, we use DPO as our preference loss and BCO as our quality loss.
|
100 |
+
|
101 |
+
Specifically, the DPO serves as the preference loss to enable the model to learn the
|
102 |
+
relative preference between chosen and rejected responses.
|
103 |
+
This algorithm optimizes the following loss function:
|
104 |
+
|
105 |
+
$$
|
106 |
+
\mathcal{L}_{\text{p}}=-\log \sigma\left(\beta \log \frac{\pi_\theta\left(y_c \mid x\right)}{\pi_0\left(y_c \mid x\right)}-\beta \log \frac{\pi_\theta\left(y_r \mid x\right)}{\pi_0\left(y_r \mid x\right)}\right),
|
107 |
+
$$
|
108 |
+
|
109 |
+
where $\beta$ is the KL penalty coefficient, and $x$, $y_c$, and $y_r$ are user query, chosen response, and rejected response, respectively.
|
110 |
+
The policy model $\pi_\theta$ is initialized from model $\pi_0$.
|
111 |
+
|
112 |
+
Additionally, the BCO loss is employed as the quality loss, which helps the model to understand the absolute quality of individual responses.
|
113 |
+
The loss function is defined as:
|
114 |
+
|
115 |
+
$$
|
116 |
+
\mathcal{L}_{\text{q}}=\mathcal{L}_{\text{q}}^+ + \mathcal{L}_{\text{q}}^-,
|
117 |
+
$$
|
118 |
+
|
119 |
+
where $\mathcal{L}_{\text{q}}^{+}$ and $\mathcal{L}_{\text{q}}^{+}$ represent the loss for chosen and rejected responses, respectively.
|
120 |
+
Each response type's loss is calculated independently, requiring the model to differentiate the absolute quality of individual responses. The loss terms are given by:
|
121 |
+
|
122 |
+
$$
|
123 |
+
\mathcal{L}_{\text{q}}^+=-\log \sigma\left(\beta \log \frac{\pi_\theta\left(y_c \mid x\right)}{\pi_0\left(y_c \mid x\right)} - \delta\right),
|
124 |
+
$$
|
125 |
+
|
126 |
+
$$
|
127 |
+
\mathcal{L}_{\text{q}}^-=-\log \sigma\left(-\left(\beta \log \frac{\pi_\theta\left(y_r \mid x\right)}{\pi_0\left(y_r \mid x\right)} - \delta\right) \right),
|
128 |
+
$$
|
129 |
+
|
130 |
+
where $\delta$ represents the reward shift, calculated as the moving average of previous rewards to stabilize training.
|
131 |
+
|
132 |
+
Finally, the SFT loss is used as the generation loss to help the model learn the generation process of preferred responses.
|
133 |
+
The loss function is defined as:
|
134 |
+
|
135 |
+
$$
|
136 |
+
\mathcal{L}_{\text{gen}}=-\frac{\log\pi_\theta\left(y_c \mid x\right)}{\left| y_c \right|}.
|
137 |
+
$$
|
138 |
+
|
139 |
+
## Evaluation on Multimodal Capability
|
140 |
+
|
141 |
+
To comprehensively compare InternVL's performance before and after MPO, we employ the benchmarks from OpenCompass Learderboard, including both well-established classic datasets and newly introduced ones. These benchmarks span a wide range of categories, aiming to provide a thorough and balanced assessment of InternVL’s capabilities across various multimodal tasks. We provide the evaluation results in the tables behind.
|
142 |
+
|
143 |
+
| Model | Avg. | MMBench v1.1 | MMStar | MMMU | MathVista | HallusionBench | AI2D | OCRBench | MMVet |
|
144 |
+
| ------------------- | ---- | ------------ | ------ | ---- | --------- | -------------- | ---- | -------- | ----- |
|
145 |
+
| InternVL2-5-1B | 54.9 | 66.5 | 51.3 | 41.2 | 47.1 | 39.4 | 69.0 | 77.4 | 47.2 |
|
146 |
+
| InternVL2-5-1B-MPO | 56.4 | 67.2 | 49.7 | 40.8 | 53.0 | 40.0 | 69.4 | 83.6 | 47.2 |
|
147 |
+
| InternVL2-5-2B | 59.9 | 70.9 | 54.3 | 43.2 | 51.1 | 42.3 | 74.9 | 80.2 | 62.6 |
|
148 |
+
| InternVL2-5-2B-MPO | 62.0 | 71.6 | 55.0 | 45.0 | 56.4 | 43.0 | 75.3 | 84.2 | 65.4 |
|
149 |
+
| InternVL2-5-4B | 65.1 | 78.2 | 58.7 | 51.8 | 60.8 | 46.6 | 81.4 | 82.0 | 61.5 |
|
150 |
+
| InternVL2-5-4B-MPO | 67.6 | 78.6 | 60.2 | 51.6 | 65.3 | 47.8 | 82.0 | 88.0 | 67.1 |
|
151 |
+
| InternVL2-5-8B | 68.9 | 82.5 | 63.2 | 56.2 | 64.5 | 49.0 | 84.6 | 82.1 | 62.8 |
|
152 |
+
| InternVL2-5-8B-MPO | 70.4 | 82.4 | 65.7 | 54.9 | 68.9 | 51.4 | 84.5 | 88.3 | 66.9 |
|
153 |
+
| InternVL2-5-26B | 71.6 | 84.6 | 66.5 | 60.7 | 68.0 | 55.8 | 86.2 | 85.4 | 65.4 |
|
154 |
+
| InternVL2-5-26B-MPO | 72.7 | 84.2 | 67.2 | 57.7 | 72.8 | 55.3 | 86.2 | 91.2 | 67.1 |
|
155 |
+
| InternVL2-5-38B | 73.5 | 85.4 | 68.5 | 64.6 | 72.4 | 57.9 | 87.6 | 84.1 | 67.2 |
|
156 |
+
| InternVL2-5-38B-MPO | 75.5 | 85.6 | 69.8 | 64.1 | 73.8 | 61.5 | 88.1 | 88.5 | 72.5 |
|
157 |
+
| InternVL2-5-78B | 75.2 | 87.5 | 69.5 | 70.0 | 70.6 | 57.4 | 89.1 | 85.3 | 71.8 |
|
158 |
+
| InternVL2-5-78B-MPO | 76.6 | 87.3 | 73.1 | 68.3 | 73.8 | 58.7 | 89.3 | 91.2 | 71.4 |
|
159 |
+
|
160 |
+
|
161 |
+
## Quick Start
|
162 |
+
|
163 |
+
We provide an example code to run `InternVL2_5-1B` using `transformers`.
|
164 |
+
|
165 |
+
> Please use transformers>=4.37.2 to ensure the model works normally.
|
166 |
+
|
167 |
+
### Model Loading
|
168 |
+
|
169 |
+
#### 16-bit (bf16 / fp16)
|
170 |
+
|
171 |
+
```python
|
172 |
+
import torch
|
173 |
+
from transformers import AutoTokenizer, AutoModel
|
174 |
+
path = "OpenGVLab/InternVL2_5-1B"
|
175 |
+
model = AutoModel.from_pretrained(
|
176 |
+
path,
|
177 |
+
torch_dtype=torch.bfloat16,
|
178 |
+
low_cpu_mem_usage=True,
|
179 |
+
use_flash_attn=True,
|
180 |
+
trust_remote_code=True).eval().cuda()
|
181 |
+
```
|
182 |
+
|
183 |
+
#### BNB 8-bit Quantization
|
184 |
+
|
185 |
+
```python
|
186 |
+
import torch
|
187 |
+
from transformers import AutoTokenizer, AutoModel
|
188 |
+
path = "OpenGVLab/InternVL2_5-1B"
|
189 |
+
model = AutoModel.from_pretrained(
|
190 |
+
path,
|
191 |
+
torch_dtype=torch.bfloat16,
|
192 |
+
load_in_8bit=True,
|
193 |
+
low_cpu_mem_usage=True,
|
194 |
+
use_flash_attn=True,
|
195 |
+
trust_remote_code=True).eval()
|
196 |
+
```
|
197 |
+
|
198 |
+
#### Multiple GPUs
|
199 |
+
|
200 |
+
The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
|
201 |
+
|
202 |
+
```python
|
203 |
+
import math
|
204 |
+
import torch
|
205 |
+
from transformers import AutoTokenizer, AutoModel
|
206 |
+
|
207 |
+
def split_model(model_name):
|
208 |
+
device_map = {}
|
209 |
+
world_size = torch.cuda.device_count()
|
210 |
+
num_layers = {
|
211 |
+
'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
|
212 |
+
'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
|
213 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
214 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
215 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
216 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
217 |
+
layer_cnt = 0
|
218 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
219 |
+
for j in range(num_layer):
|
220 |
+
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
221 |
+
layer_cnt += 1
|
222 |
+
device_map['vision_model'] = 0
|
223 |
+
device_map['mlp1'] = 0
|
224 |
+
device_map['language_model.model.tok_embeddings'] = 0
|
225 |
+
device_map['language_model.model.embed_tokens'] = 0
|
226 |
+
device_map['language_model.output'] = 0
|
227 |
+
device_map['language_model.model.norm'] = 0
|
228 |
+
device_map['language_model.lm_head'] = 0
|
229 |
+
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
230 |
+
|
231 |
+
return device_map
|
232 |
+
|
233 |
+
path = "OpenGVLab/InternVL2_5-1B"
|
234 |
+
device_map = split_model('InternVL2_5-1B')
|
235 |
+
model = AutoModel.from_pretrained(
|
236 |
+
path,
|
237 |
+
torch_dtype=torch.bfloat16,
|
238 |
+
low_cpu_mem_usage=True,
|
239 |
+
use_flash_attn=True,
|
240 |
+
trust_remote_code=True,
|
241 |
+
device_map=device_map).eval()
|
242 |
+
```
|
243 |
+
|
244 |
+
### Inference with Transformers
|
245 |
+
|
246 |
+
```python
|
247 |
+
import numpy as np
|
248 |
+
import torch
|
249 |
+
import torchvision.transforms as T
|
250 |
+
from decord import VideoReader, cpu
|
251 |
+
from PIL import Image
|
252 |
+
from torchvision.transforms.functional import InterpolationMode
|
253 |
+
from transformers import AutoModel, AutoTokenizer
|
254 |
+
|
255 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
256 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
257 |
+
|
258 |
+
def build_transform(input_size):
|
259 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
260 |
+
transform = T.Compose([
|
261 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
262 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
263 |
+
T.ToTensor(),
|
264 |
+
T.Normalize(mean=MEAN, std=STD)
|
265 |
+
])
|
266 |
+
return transform
|
267 |
+
|
268 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
269 |
+
best_ratio_diff = float('inf')
|
270 |
+
best_ratio = (1, 1)
|
271 |
+
area = width * height
|
272 |
+
for ratio in target_ratios:
|
273 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
274 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
275 |
+
if ratio_diff < best_ratio_diff:
|
276 |
+
best_ratio_diff = ratio_diff
|
277 |
+
best_ratio = ratio
|
278 |
+
elif ratio_diff == best_ratio_diff:
|
279 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
280 |
+
best_ratio = ratio
|
281 |
+
return best_ratio
|
282 |
+
|
283 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
284 |
+
orig_width, orig_height = image.size
|
285 |
+
aspect_ratio = orig_width / orig_height
|
286 |
+
|
287 |
+
# calculate the existing image aspect ratio
|
288 |
+
target_ratios = set(
|
289 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
290 |
+
i * j <= max_num and i * j >= min_num)
|
291 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
292 |
+
|
293 |
+
# find the closest aspect ratio to the target
|
294 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
295 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
296 |
+
|
297 |
+
# calculate the target width and height
|
298 |
+
target_width = image_size * target_aspect_ratio[0]
|
299 |
+
target_height = image_size * target_aspect_ratio[1]
|
300 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
301 |
+
|
302 |
+
# resize the image
|
303 |
+
resized_img = image.resize((target_width, target_height))
|
304 |
+
processed_images = []
|
305 |
+
for i in range(blocks):
|
306 |
+
box = (
|
307 |
+
(i % (target_width // image_size)) * image_size,
|
308 |
+
(i // (target_width // image_size)) * image_size,
|
309 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
310 |
+
((i // (target_width // image_size)) + 1) * image_size
|
311 |
+
)
|
312 |
+
# split the image
|
313 |
+
split_img = resized_img.crop(box)
|
314 |
+
processed_images.append(split_img)
|
315 |
+
assert len(processed_images) == blocks
|
316 |
+
if use_thumbnail and len(processed_images) != 1:
|
317 |
+
thumbnail_img = image.resize((image_size, image_size))
|
318 |
+
processed_images.append(thumbnail_img)
|
319 |
+
return processed_images
|
320 |
+
|
321 |
+
def load_image(image_file, input_size=448, max_num=12):
|
322 |
+
image = Image.open(image_file).convert('RGB')
|
323 |
+
transform = build_transform(input_size=input_size)
|
324 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
325 |
+
pixel_values = [transform(image) for image in images]
|
326 |
+
pixel_values = torch.stack(pixel_values)
|
327 |
+
return pixel_values
|
328 |
+
|
329 |
+
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
|
330 |
+
path = 'OpenGVLab/InternVL2_5-1B'
|
331 |
+
model = AutoModel.from_pretrained(
|
332 |
+
path,
|
333 |
+
torch_dtype=torch.bfloat16,
|
334 |
+
low_cpu_mem_usage=True,
|
335 |
+
use_flash_attn=True,
|
336 |
+
trust_remote_code=True).eval().cuda()
|
337 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
338 |
+
|
339 |
+
# set the max number of tiles in `max_num`
|
340 |
+
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
341 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
342 |
+
|
343 |
+
# pure-text conversation (纯文本对话)
|
344 |
+
question = 'Hello, who are you?'
|
345 |
+
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
|
346 |
+
print(f'User: {question}\nAssistant: {response}')
|
347 |
+
|
348 |
+
question = 'Can you tell me a story?'
|
349 |
+
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
|
350 |
+
print(f'User: {question}\nAssistant: {response}')
|
351 |
+
|
352 |
+
# single-image single-round conversation (单图单轮对话)
|
353 |
+
question = '<image>\nPlease describe the image shortly.'
|
354 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
355 |
+
print(f'User: {question}\nAssistant: {response}')
|
356 |
+
|
357 |
+
# single-image multi-round conversation (单图多轮对话)
|
358 |
+
question = '<image>\nPlease describe the image in detail.'
|
359 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
360 |
+
print(f'User: {question}\nAssistant: {response}')
|
361 |
+
|
362 |
+
question = 'Please write a poem according to the image.'
|
363 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
364 |
+
print(f'User: {question}\nAssistant: {response}')
|
365 |
+
|
366 |
+
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
|
367 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
368 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
369 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
370 |
+
|
371 |
+
question = '<image>\nDescribe the two images in detail.'
|
372 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
373 |
+
history=None, return_history=True)
|
374 |
+
print(f'User: {question}\nAssistant: {response}')
|
375 |
+
|
376 |
+
question = 'What are the similarities and differences between these two images.'
|
377 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
378 |
+
history=history, return_history=True)
|
379 |
+
print(f'User: {question}\nAssistant: {response}')
|
380 |
+
|
381 |
+
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
|
382 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
383 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
384 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
385 |
+
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
386 |
+
|
387 |
+
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
|
388 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
389 |
+
num_patches_list=num_patches_list,
|
390 |
+
history=None, return_history=True)
|
391 |
+
print(f'User: {question}\nAssistant: {response}')
|
392 |
+
|
393 |
+
question = 'What are the similarities and differences between these two images.'
|
394 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
395 |
+
num_patches_list=num_patches_list,
|
396 |
+
history=history, return_history=True)
|
397 |
+
print(f'User: {question}\nAssistant: {response}')
|
398 |
+
|
399 |
+
# batch inference, single image per sample (单图批处理)
|
400 |
+
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
401 |
+
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
402 |
+
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
403 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
404 |
+
|
405 |
+
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
|
406 |
+
responses = model.batch_chat(tokenizer, pixel_values,
|
407 |
+
num_patches_list=num_patches_list,
|
408 |
+
questions=questions,
|
409 |
+
generation_config=generation_config)
|
410 |
+
for question, response in zip(questions, responses):
|
411 |
+
print(f'User: {question}\nAssistant: {response}')
|
412 |
+
|
413 |
+
# video multi-round conversation (视频多轮对话)
|
414 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
415 |
+
if bound:
|
416 |
+
start, end = bound[0], bound[1]
|
417 |
+
else:
|
418 |
+
start, end = -100000, 100000
|
419 |
+
start_idx = max(first_idx, round(start * fps))
|
420 |
+
end_idx = min(round(end * fps), max_frame)
|
421 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
422 |
+
frame_indices = np.array([
|
423 |
+
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
424 |
+
for idx in range(num_segments)
|
425 |
+
])
|
426 |
+
return frame_indices
|
427 |
+
|
428 |
+
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
429 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
430 |
+
max_frame = len(vr) - 1
|
431 |
+
fps = float(vr.get_avg_fps())
|
432 |
+
|
433 |
+
pixel_values_list, num_patches_list = [], []
|
434 |
+
transform = build_transform(input_size=input_size)
|
435 |
+
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
436 |
+
for frame_index in frame_indices:
|
437 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
|
438 |
+
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
439 |
+
pixel_values = [transform(tile) for tile in img]
|
440 |
+
pixel_values = torch.stack(pixel_values)
|
441 |
+
num_patches_list.append(pixel_values.shape[0])
|
442 |
+
pixel_values_list.append(pixel_values)
|
443 |
+
pixel_values = torch.cat(pixel_values_list)
|
444 |
+
return pixel_values, num_patches_list
|
445 |
+
|
446 |
+
video_path = './examples/red-panda.mp4'
|
447 |
+
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
|
448 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
449 |
+
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
|
450 |
+
question = video_prefix + 'What is the red panda doing?'
|
451 |
+
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
|
452 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
453 |
+
num_patches_list=num_patches_list, history=None, return_history=True)
|
454 |
+
print(f'User: {question}\nAssistant: {response}')
|
455 |
+
|
456 |
+
question = 'Describe this video in detail.'
|
457 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
458 |
+
num_patches_list=num_patches_list, history=history, return_history=True)
|
459 |
+
print(f'User: {question}\nAssistant: {response}')
|
460 |
+
```
|
461 |
+
|
462 |
+
#### Streaming Output
|
463 |
+
|
464 |
+
Besides this method, you can also use the following code to get streamed output.
|
465 |
+
|
466 |
+
```python
|
467 |
+
from transformers import TextIteratorStreamer
|
468 |
+
from threading import Thread
|
469 |
+
|
470 |
+
# Initialize the streamer
|
471 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
|
472 |
+
# Define the generation configuration
|
473 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
|
474 |
+
# Start the model chat in a separate thread
|
475 |
+
thread = Thread(target=model.chat, kwargs=dict(
|
476 |
+
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
|
477 |
+
history=None, return_history=False, generation_config=generation_config,
|
478 |
+
))
|
479 |
+
thread.start()
|
480 |
+
|
481 |
+
# Initialize an empty string to store the generated text
|
482 |
+
generated_text = ''
|
483 |
+
# Loop through the streamer to get the new text as it is generated
|
484 |
+
for new_text in streamer:
|
485 |
+
if new_text == model.conv_template.sep:
|
486 |
+
break
|
487 |
+
generated_text += new_text
|
488 |
+
print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
|
489 |
+
```
|
490 |
+
|
491 |
+
## Finetune
|
492 |
+
|
493 |
+
Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
|
494 |
+
|
495 |
+
## Deployment
|
496 |
+
|
497 |
+
### LMDeploy
|
498 |
+
|
499 |
+
LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
|
500 |
+
|
501 |
+
```sh
|
502 |
+
pip install lmdeploy>=0.6.4
|
503 |
+
```
|
504 |
+
|
505 |
+
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
|
506 |
+
|
507 |
+
#### A 'Hello, world' Example
|
508 |
+
|
509 |
+
```python
|
510 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
511 |
+
from lmdeploy.vl import load_image
|
512 |
+
|
513 |
+
model = 'OpenGVLab/InternVL2_5-1B'
|
514 |
+
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
|
515 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
516 |
+
response = pipe(('describe this image', image))
|
517 |
+
print(response.text)
|
518 |
+
```
|
519 |
+
|
520 |
+
If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
|
521 |
+
|
522 |
+
#### Multi-images Inference
|
523 |
+
|
524 |
+
When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
|
525 |
+
|
526 |
+
```python
|
527 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
528 |
+
from lmdeploy.vl import load_image
|
529 |
+
from lmdeploy.vl.constants import IMAGE_TOKEN
|
530 |
+
|
531 |
+
model = 'OpenGVLab/InternVL2_5-1B'
|
532 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
533 |
+
|
534 |
+
image_urls=[
|
535 |
+
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
|
536 |
+
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
|
537 |
+
]
|
538 |
+
|
539 |
+
images = [load_image(img_url) for img_url in image_urls]
|
540 |
+
# Numbering images improves multi-image conversations
|
541 |
+
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
|
542 |
+
print(response.text)
|
543 |
+
```
|
544 |
+
|
545 |
+
#### Batch Prompts Inference
|
546 |
+
|
547 |
+
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
|
548 |
+
|
549 |
+
```python
|
550 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
551 |
+
from lmdeploy.vl import load_image
|
552 |
+
|
553 |
+
model = 'OpenGVLab/InternVL2_5-1B'
|
554 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
555 |
+
|
556 |
+
image_urls=[
|
557 |
+
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
|
558 |
+
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
|
559 |
+
]
|
560 |
+
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
|
561 |
+
response = pipe(prompts)
|
562 |
+
print(response)
|
563 |
+
```
|
564 |
+
|
565 |
+
#### Multi-turn Conversation
|
566 |
+
|
567 |
+
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
|
568 |
+
|
569 |
+
```python
|
570 |
+
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
|
571 |
+
from lmdeploy.vl import load_image
|
572 |
+
|
573 |
+
model = 'OpenGVLab/InternVL2_5-1B'
|
574 |
+
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
|
575 |
+
|
576 |
+
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
|
577 |
+
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
|
578 |
+
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
|
579 |
+
print(sess.response.text)
|
580 |
+
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
|
581 |
+
print(sess.response.text)
|
582 |
+
```
|
583 |
+
|
584 |
+
#### Service
|
585 |
+
|
586 |
+
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
587 |
+
|
588 |
+
```shell
|
589 |
+
lmdeploy serve api_server OpenGVLab/InternVL2_5-1B --server-port 23333
|
590 |
+
```
|
591 |
+
|
592 |
+
To use the OpenAI-style interface, you need to install OpenAI:
|
593 |
+
|
594 |
+
```shell
|
595 |
+
pip install openai
|
596 |
+
```
|
597 |
+
|
598 |
+
Then, use the code below to make the API call:
|
599 |
+
|
600 |
+
```python
|
601 |
+
from openai import OpenAI
|
602 |
+
|
603 |
+
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
|
604 |
+
model_name = client.models.list().data[0].id
|
605 |
+
response = client.chat.completions.create(
|
606 |
+
model=model_name,
|
607 |
+
messages=[{
|
608 |
+
'role':
|
609 |
+
'user',
|
610 |
+
'content': [{
|
611 |
+
'type': 'text',
|
612 |
+
'text': 'describe this image',
|
613 |
+
}, {
|
614 |
+
'type': 'image_url',
|
615 |
+
'image_url': {
|
616 |
+
'url':
|
617 |
+
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
|
618 |
+
},
|
619 |
+
}],
|
620 |
+
}],
|
621 |
+
temperature=0.8,
|
622 |
+
top_p=0.8)
|
623 |
+
print(response)
|
624 |
+
```
|
625 |
+
|
626 |
+
## License
|
627 |
+
|
628 |
+
This project is released under the MIT License. This project uses the pre-trained Qwen2.5-0.5B-Instruct as a component, which is licensed under the Apache License 2.0.
|
629 |
+
|
630 |
+
## Citation
|
631 |
+
|
632 |
+
If you find this project useful in your research, please consider citing:
|
633 |
+
|
634 |
+
```BibTeX
|
635 |
+
@article{wang2024mpo,
|
636 |
+
title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
|
637 |
+
author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
|
638 |
+
journal={arXiv preprint arXiv:2411.10442},
|
639 |
+
year={2024}
|
640 |
+
}
|
641 |
+
@article{chen2024expanding,
|
642 |
+
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
|
643 |
+
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
|
644 |
+
journal={arXiv preprint arXiv:2412.05271},
|
645 |
+
year={2024}
|
646 |
+
}
|
647 |
+
@article{chen2024far,
|
648 |
+
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
|
649 |
+
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
|
650 |
+
journal={arXiv preprint arXiv:2404.16821},
|
651 |
+
year={2024}
|
652 |
+
}
|
653 |
+
@inproceedings{chen2024internvl,
|
654 |
+
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
|
655 |
+
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
|
656 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
657 |
+
pages={24185--24198},
|
658 |
+
year={2024}
|
659 |
+
}
|
660 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 151673,
|
3 |
+
"</img>": 151666,
|
4 |
+
"</quad>": 151669,
|
5 |
+
"</ref>": 151671,
|
6 |
+
"</tool_call>": 151658,
|
7 |
+
"<IMG_CONTEXT>": 151667,
|
8 |
+
"<box>": 151672,
|
9 |
+
"<img>": 151665,
|
10 |
+
"<quad>": 151668,
|
11 |
+
"<ref>": 151670,
|
12 |
+
"<tool_call>": 151657,
|
13 |
+
"<|box_end|>": 151649,
|
14 |
+
"<|box_start|>": 151648,
|
15 |
+
"<|endoftext|>": 151643,
|
16 |
+
"<|file_sep|>": 151664,
|
17 |
+
"<|fim_middle|>": 151660,
|
18 |
+
"<|fim_pad|>": 151662,
|
19 |
+
"<|fim_prefix|>": 151659,
|
20 |
+
"<|fim_suffix|>": 151661,
|
21 |
+
"<|im_end|>": 151645,
|
22 |
+
"<|im_start|>": 151644,
|
23 |
+
"<|image_pad|>": 151655,
|
24 |
+
"<|object_ref_end|>": 151647,
|
25 |
+
"<|object_ref_start|>": 151646,
|
26 |
+
"<|quad_end|>": 151651,
|
27 |
+
"<|quad_start|>": 151650,
|
28 |
+
"<|repo_name|>": 151663,
|
29 |
+
"<|video_pad|>": 151656,
|
30 |
+
"<|vision_end|>": 151653,
|
31 |
+
"<|vision_pad|>": 151654,
|
32 |
+
"<|vision_start|>": 151652
|
33 |
+
}
|
config.json
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "/mnt/petrelfs/share_data/wangweiyun/share_internvl/InternVL2_5-78B",
|
4 |
+
"architectures": [
|
5 |
+
"InternVLChatModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
|
9 |
+
"AutoModel": "modeling_internvl_chat.InternVLChatModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
|
11 |
+
},
|
12 |
+
"downsample_ratio": 0.5,
|
13 |
+
"dynamic_image_size": true,
|
14 |
+
"force_image_size": 448,
|
15 |
+
"hidden_size": 8192,
|
16 |
+
"llm_config": {
|
17 |
+
"_name_or_path": "Qwen/Qwen2.5-72B-Instruct",
|
18 |
+
"add_cross_attention": false,
|
19 |
+
"architectures": [
|
20 |
+
"Qwen2ForCausalLM"
|
21 |
+
],
|
22 |
+
"attention_dropout": 0.0,
|
23 |
+
"bad_words_ids": null,
|
24 |
+
"begin_suppress_tokens": null,
|
25 |
+
"bos_token_id": 151643,
|
26 |
+
"chunk_size_feed_forward": 0,
|
27 |
+
"cross_attention_hidden_size": null,
|
28 |
+
"decoder_start_token_id": null,
|
29 |
+
"diversity_penalty": 0.0,
|
30 |
+
"do_sample": false,
|
31 |
+
"early_stopping": false,
|
32 |
+
"encoder_no_repeat_ngram_size": 0,
|
33 |
+
"eos_token_id": 151645,
|
34 |
+
"exponential_decay_length_penalty": null,
|
35 |
+
"finetuning_task": null,
|
36 |
+
"forced_bos_token_id": null,
|
37 |
+
"forced_eos_token_id": null,
|
38 |
+
"hidden_act": "silu",
|
39 |
+
"hidden_size": 8192,
|
40 |
+
"id2label": {
|
41 |
+
"0": "LABEL_0",
|
42 |
+
"1": "LABEL_1"
|
43 |
+
},
|
44 |
+
"initializer_range": 0.02,
|
45 |
+
"intermediate_size": 29568,
|
46 |
+
"is_decoder": false,
|
47 |
+
"is_encoder_decoder": false,
|
48 |
+
"label2id": {
|
49 |
+
"LABEL_0": 0,
|
50 |
+
"LABEL_1": 1
|
51 |
+
},
|
52 |
+
"length_penalty": 1.0,
|
53 |
+
"max_length": 20,
|
54 |
+
"max_position_embeddings": 32768,
|
55 |
+
"max_window_layers": 70,
|
56 |
+
"min_length": 0,
|
57 |
+
"model_type": "qwen2",
|
58 |
+
"no_repeat_ngram_size": 0,
|
59 |
+
"num_attention_heads": 64,
|
60 |
+
"num_beam_groups": 1,
|
61 |
+
"num_beams": 1,
|
62 |
+
"num_hidden_layers": 80,
|
63 |
+
"num_key_value_heads": 8,
|
64 |
+
"num_return_sequences": 1,
|
65 |
+
"output_attentions": false,
|
66 |
+
"output_hidden_states": false,
|
67 |
+
"output_scores": false,
|
68 |
+
"pad_token_id": null,
|
69 |
+
"prefix": null,
|
70 |
+
"problem_type": null,
|
71 |
+
"pruned_heads": {},
|
72 |
+
"remove_invalid_values": false,
|
73 |
+
"repetition_penalty": 1.0,
|
74 |
+
"return_dict": true,
|
75 |
+
"return_dict_in_generate": false,
|
76 |
+
"rms_norm_eps": 1e-06,
|
77 |
+
"rope_scaling": null,
|
78 |
+
"rope_theta": 1000000.0,
|
79 |
+
"sep_token_id": null,
|
80 |
+
"sliding_window": null,
|
81 |
+
"suppress_tokens": null,
|
82 |
+
"task_specific_params": null,
|
83 |
+
"temperature": 1.0,
|
84 |
+
"tf_legacy_loss": false,
|
85 |
+
"tie_encoder_decoder": false,
|
86 |
+
"tie_word_embeddings": false,
|
87 |
+
"tokenizer_class": null,
|
88 |
+
"top_k": 50,
|
89 |
+
"top_p": 1.0,
|
90 |
+
"torch_dtype": "bfloat16",
|
91 |
+
"torchscript": false,
|
92 |
+
"transformers_version": "4.45.1",
|
93 |
+
"typical_p": 1.0,
|
94 |
+
"use_bfloat16": true,
|
95 |
+
"use_cache": false,
|
96 |
+
"use_sliding_window": false,
|
97 |
+
"vocab_size": 151674
|
98 |
+
},
|
99 |
+
"max_dynamic_patch": 12,
|
100 |
+
"min_dynamic_patch": 1,
|
101 |
+
"model_type": "internvl_chat",
|
102 |
+
"pad2square": false,
|
103 |
+
"ps_version": "v2",
|
104 |
+
"select_layer": -1,
|
105 |
+
"template": "internvl2_5",
|
106 |
+
"tie_word_embeddings": false,
|
107 |
+
"torch_dtype": "bfloat16",
|
108 |
+
"transformers_version": null,
|
109 |
+
"use_backbone_lora": 0,
|
110 |
+
"use_llm_lora": 0,
|
111 |
+
"use_thumbnail": true,
|
112 |
+
"vision_config": {
|
113 |
+
"_name_or_path": "",
|
114 |
+
"add_cross_attention": false,
|
115 |
+
"architectures": [
|
116 |
+
"InternVisionModel"
|
117 |
+
],
|
118 |
+
"attention_dropout": 0.0,
|
119 |
+
"bad_words_ids": null,
|
120 |
+
"begin_suppress_tokens": null,
|
121 |
+
"bos_token_id": null,
|
122 |
+
"chunk_size_feed_forward": 0,
|
123 |
+
"cross_attention_hidden_size": null,
|
124 |
+
"decoder_start_token_id": null,
|
125 |
+
"diversity_penalty": 0.0,
|
126 |
+
"do_sample": false,
|
127 |
+
"drop_path_rate": 0.4,
|
128 |
+
"dropout": 0.0,
|
129 |
+
"early_stopping": false,
|
130 |
+
"encoder_no_repeat_ngram_size": 0,
|
131 |
+
"eos_token_id": null,
|
132 |
+
"exponential_decay_length_penalty": null,
|
133 |
+
"finetuning_task": null,
|
134 |
+
"forced_bos_token_id": null,
|
135 |
+
"forced_eos_token_id": null,
|
136 |
+
"hidden_act": "gelu",
|
137 |
+
"hidden_size": 3200,
|
138 |
+
"id2label": {
|
139 |
+
"0": "LABEL_0",
|
140 |
+
"1": "LABEL_1"
|
141 |
+
},
|
142 |
+
"image_size": 448,
|
143 |
+
"initializer_factor": 0.1,
|
144 |
+
"initializer_range": 1e-10,
|
145 |
+
"intermediate_size": 12800,
|
146 |
+
"is_decoder": false,
|
147 |
+
"is_encoder_decoder": false,
|
148 |
+
"label2id": {
|
149 |
+
"LABEL_0": 0,
|
150 |
+
"LABEL_1": 1
|
151 |
+
},
|
152 |
+
"layer_norm_eps": 1e-06,
|
153 |
+
"length_penalty": 1.0,
|
154 |
+
"max_length": 20,
|
155 |
+
"min_length": 0,
|
156 |
+
"model_type": "intern_vit_6b",
|
157 |
+
"no_repeat_ngram_size": 0,
|
158 |
+
"norm_type": "rms_norm",
|
159 |
+
"num_attention_heads": 25,
|
160 |
+
"num_beam_groups": 1,
|
161 |
+
"num_beams": 1,
|
162 |
+
"num_channels": 3,
|
163 |
+
"num_hidden_layers": 45,
|
164 |
+
"num_return_sequences": 1,
|
165 |
+
"output_attentions": false,
|
166 |
+
"output_hidden_states": false,
|
167 |
+
"output_scores": false,
|
168 |
+
"pad_token_id": null,
|
169 |
+
"patch_size": 14,
|
170 |
+
"prefix": null,
|
171 |
+
"problem_type": null,
|
172 |
+
"pruned_heads": {},
|
173 |
+
"qk_normalization": true,
|
174 |
+
"qkv_bias": false,
|
175 |
+
"remove_invalid_values": false,
|
176 |
+
"repetition_penalty": 1.0,
|
177 |
+
"return_dict": true,
|
178 |
+
"return_dict_in_generate": false,
|
179 |
+
"sep_token_id": null,
|
180 |
+
"suppress_tokens": null,
|
181 |
+
"task_specific_params": null,
|
182 |
+
"temperature": 1.0,
|
183 |
+
"tf_legacy_loss": false,
|
184 |
+
"tie_encoder_decoder": false,
|
185 |
+
"tie_word_embeddings": true,
|
186 |
+
"tokenizer_class": null,
|
187 |
+
"top_k": 50,
|
188 |
+
"top_p": 1.0,
|
189 |
+
"torch_dtype": "bfloat16",
|
190 |
+
"torchscript": false,
|
191 |
+
"transformers_version": "4.45.1",
|
192 |
+
"typical_p": 1.0,
|
193 |
+
"use_bfloat16": true,
|
194 |
+
"use_flash_attn": true
|
195 |
+
}
|
196 |
+
}
|
configuration_intern_vit.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import os
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class InternVisionConfig(PretrainedConfig):
|
17 |
+
r"""
|
18 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
19 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
20 |
+
|
21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
+
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
num_channels (`int`, *optional*, defaults to 3):
|
26 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
27 |
+
patch_size (`int`, *optional*, defaults to 14):
|
28 |
+
The size (resolution) of each patch.
|
29 |
+
image_size (`int`, *optional*, defaults to 224):
|
30 |
+
The size (resolution) of each image.
|
31 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
32 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
33 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
34 |
+
Dimensionality of the encoder layers and the pooler layer.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
38 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
39 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
42 |
+
Number of hidden layers in the Transformer encoder.
|
43 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
44 |
+
Whether to use flash attention mechanism.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
46 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
47 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
48 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
49 |
+
The epsilon used by the layer normalization layers.
|
50 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
51 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
52 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
53 |
+
Dropout rate for stochastic depth.
|
54 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
55 |
+
The dropout ratio for the attention probabilities.
|
56 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
57 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
58 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
59 |
+
A factor for layer scale.
|
60 |
+
"""
|
61 |
+
|
62 |
+
model_type = 'intern_vit_6b'
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
num_channels=3,
|
67 |
+
patch_size=14,
|
68 |
+
image_size=224,
|
69 |
+
qkv_bias=False,
|
70 |
+
hidden_size=3200,
|
71 |
+
num_attention_heads=25,
|
72 |
+
intermediate_size=12800,
|
73 |
+
qk_normalization=True,
|
74 |
+
num_hidden_layers=48,
|
75 |
+
use_flash_attn=True,
|
76 |
+
hidden_act='gelu',
|
77 |
+
norm_type='rms_norm',
|
78 |
+
layer_norm_eps=1e-6,
|
79 |
+
dropout=0.0,
|
80 |
+
drop_path_rate=0.0,
|
81 |
+
attention_dropout=0.0,
|
82 |
+
initializer_range=0.02,
|
83 |
+
initializer_factor=0.1,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(**kwargs)
|
87 |
+
|
88 |
+
self.hidden_size = hidden_size
|
89 |
+
self.intermediate_size = intermediate_size
|
90 |
+
self.dropout = dropout
|
91 |
+
self.drop_path_rate = drop_path_rate
|
92 |
+
self.num_hidden_layers = num_hidden_layers
|
93 |
+
self.num_attention_heads = num_attention_heads
|
94 |
+
self.num_channels = num_channels
|
95 |
+
self.patch_size = patch_size
|
96 |
+
self.image_size = image_size
|
97 |
+
self.initializer_range = initializer_range
|
98 |
+
self.initializer_factor = initializer_factor
|
99 |
+
self.attention_dropout = attention_dropout
|
100 |
+
self.layer_norm_eps = layer_norm_eps
|
101 |
+
self.hidden_act = hidden_act
|
102 |
+
self.norm_type = norm_type
|
103 |
+
self.qkv_bias = qkv_bias
|
104 |
+
self.qk_normalization = qk_normalization
|
105 |
+
self.use_flash_attn = use_flash_attn
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
109 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
110 |
+
|
111 |
+
if 'vision_config' in config_dict:
|
112 |
+
config_dict = config_dict['vision_config']
|
113 |
+
|
114 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
115 |
+
logger.warning(
|
116 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
117 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
118 |
+
)
|
119 |
+
|
120 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internvl_chat.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
from .configuration_intern_vit import InternVisionConfig
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
class InternVLChatConfig(PretrainedConfig):
|
19 |
+
model_type = 'internvl_chat'
|
20 |
+
is_composition = True
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
vision_config=None,
|
25 |
+
llm_config=None,
|
26 |
+
use_backbone_lora=0,
|
27 |
+
use_llm_lora=0,
|
28 |
+
select_layer=-1,
|
29 |
+
force_image_size=None,
|
30 |
+
downsample_ratio=0.5,
|
31 |
+
template=None,
|
32 |
+
dynamic_image_size=False,
|
33 |
+
use_thumbnail=False,
|
34 |
+
ps_version='v1',
|
35 |
+
min_dynamic_patch=1,
|
36 |
+
max_dynamic_patch=6,
|
37 |
+
**kwargs):
|
38 |
+
super().__init__(**kwargs)
|
39 |
+
|
40 |
+
if vision_config is None:
|
41 |
+
vision_config = {'architectures': ['InternVisionModel']}
|
42 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
43 |
+
|
44 |
+
if llm_config is None:
|
45 |
+
llm_config = {'architectures': ['Qwen2ForCausalLM']}
|
46 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
47 |
+
|
48 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
49 |
+
if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
|
50 |
+
self.llm_config = LlamaConfig(**llm_config)
|
51 |
+
elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
|
52 |
+
self.llm_config = Qwen2Config(**llm_config)
|
53 |
+
else:
|
54 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
|
55 |
+
self.use_backbone_lora = use_backbone_lora
|
56 |
+
self.use_llm_lora = use_llm_lora
|
57 |
+
self.select_layer = select_layer
|
58 |
+
self.force_image_size = force_image_size
|
59 |
+
self.downsample_ratio = downsample_ratio
|
60 |
+
self.template = template
|
61 |
+
self.dynamic_image_size = dynamic_image_size
|
62 |
+
self.use_thumbnail = use_thumbnail
|
63 |
+
self.ps_version = ps_version # pixel shuffle version
|
64 |
+
self.min_dynamic_patch = min_dynamic_patch
|
65 |
+
self.max_dynamic_patch = max_dynamic_patch
|
66 |
+
|
67 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
68 |
+
logger.info(f'ps_version: {self.ps_version}')
|
69 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
70 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
71 |
+
|
72 |
+
def to_dict(self):
|
73 |
+
"""
|
74 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
78 |
+
"""
|
79 |
+
output = copy.deepcopy(self.__dict__)
|
80 |
+
output['vision_config'] = self.vision_config.to_dict()
|
81 |
+
output['llm_config'] = self.llm_config.to_dict()
|
82 |
+
output['model_type'] = self.__class__.model_type
|
83 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
84 |
+
output['use_llm_lora'] = self.use_llm_lora
|
85 |
+
output['select_layer'] = self.select_layer
|
86 |
+
output['force_image_size'] = self.force_image_size
|
87 |
+
output['downsample_ratio'] = self.downsample_ratio
|
88 |
+
output['template'] = self.template
|
89 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
90 |
+
output['use_thumbnail'] = self.use_thumbnail
|
91 |
+
output['ps_version'] = self.ps_version
|
92 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
93 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
94 |
+
|
95 |
+
return output
|
conversation.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
|
7 |
+
Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
8 |
+
"""
|
9 |
+
|
10 |
+
import dataclasses
|
11 |
+
from enum import IntEnum, auto
|
12 |
+
from typing import Dict, List, Tuple, Union
|
13 |
+
|
14 |
+
|
15 |
+
class SeparatorStyle(IntEnum):
|
16 |
+
"""Separator styles."""
|
17 |
+
|
18 |
+
ADD_COLON_SINGLE = auto()
|
19 |
+
ADD_COLON_TWO = auto()
|
20 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
21 |
+
NO_COLON_SINGLE = auto()
|
22 |
+
NO_COLON_TWO = auto()
|
23 |
+
ADD_NEW_LINE_SINGLE = auto()
|
24 |
+
LLAMA2 = auto()
|
25 |
+
CHATGLM = auto()
|
26 |
+
CHATML = auto()
|
27 |
+
CHATINTERN = auto()
|
28 |
+
DOLLY = auto()
|
29 |
+
RWKV = auto()
|
30 |
+
PHOENIX = auto()
|
31 |
+
ROBIN = auto()
|
32 |
+
FALCON_CHAT = auto()
|
33 |
+
CHATGLM3 = auto()
|
34 |
+
INTERNVL_ZH = auto()
|
35 |
+
MPT = auto()
|
36 |
+
|
37 |
+
|
38 |
+
@dataclasses.dataclass
|
39 |
+
class Conversation:
|
40 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
41 |
+
|
42 |
+
# The name of this template
|
43 |
+
name: str
|
44 |
+
# The template of the system prompt
|
45 |
+
system_template: str = '{system_message}'
|
46 |
+
# The system message
|
47 |
+
system_message: str = ''
|
48 |
+
# The names of two roles
|
49 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
50 |
+
# All messages. Each item is (role, message).
|
51 |
+
messages: List[List[str]] = ()
|
52 |
+
# The number of few shot examples
|
53 |
+
offset: int = 0
|
54 |
+
# The separator style and configurations
|
55 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
56 |
+
sep: str = '\n'
|
57 |
+
sep2: str = None
|
58 |
+
# Stop criteria (the default one is EOS token)
|
59 |
+
stop_str: Union[str, List[str]] = None
|
60 |
+
# Stops generation if meeting any token in this list
|
61 |
+
stop_token_ids: List[int] = None
|
62 |
+
|
63 |
+
def get_prompt(self) -> str:
|
64 |
+
"""Get the prompt for generation."""
|
65 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
66 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
67 |
+
ret = system_prompt + self.sep
|
68 |
+
for role, message in self.messages:
|
69 |
+
if message:
|
70 |
+
ret += role + ': ' + message + self.sep
|
71 |
+
else:
|
72 |
+
ret += role + ':'
|
73 |
+
return ret
|
74 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
75 |
+
seps = [self.sep, self.sep2]
|
76 |
+
ret = system_prompt + seps[0]
|
77 |
+
for i, (role, message) in enumerate(self.messages):
|
78 |
+
if message:
|
79 |
+
ret += role + ': ' + message + seps[i % 2]
|
80 |
+
else:
|
81 |
+
ret += role + ':'
|
82 |
+
return ret
|
83 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
84 |
+
ret = system_prompt + self.sep
|
85 |
+
for role, message in self.messages:
|
86 |
+
if message:
|
87 |
+
ret += role + ': ' + message + self.sep
|
88 |
+
else:
|
89 |
+
ret += role + ': ' # must be end with a space
|
90 |
+
return ret
|
91 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
92 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
93 |
+
for role, message in self.messages:
|
94 |
+
if message:
|
95 |
+
ret += role + '\n' + message + self.sep
|
96 |
+
else:
|
97 |
+
ret += role + '\n'
|
98 |
+
return ret
|
99 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
100 |
+
ret = system_prompt
|
101 |
+
for role, message in self.messages:
|
102 |
+
if message:
|
103 |
+
ret += role + message + self.sep
|
104 |
+
else:
|
105 |
+
ret += role
|
106 |
+
return ret
|
107 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
108 |
+
seps = [self.sep, self.sep2]
|
109 |
+
ret = system_prompt
|
110 |
+
for i, (role, message) in enumerate(self.messages):
|
111 |
+
if message:
|
112 |
+
ret += role + message + seps[i % 2]
|
113 |
+
else:
|
114 |
+
ret += role
|
115 |
+
return ret
|
116 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
117 |
+
ret = system_prompt
|
118 |
+
for i, (role, message) in enumerate(self.messages):
|
119 |
+
if message:
|
120 |
+
ret += (
|
121 |
+
role
|
122 |
+
+ ': '
|
123 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
124 |
+
)
|
125 |
+
ret += '\n\n'
|
126 |
+
else:
|
127 |
+
ret += role + ':'
|
128 |
+
return ret
|
129 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
130 |
+
seps = [self.sep, self.sep2]
|
131 |
+
if self.system_message:
|
132 |
+
ret = system_prompt
|
133 |
+
else:
|
134 |
+
ret = '[INST] '
|
135 |
+
for i, (role, message) in enumerate(self.messages):
|
136 |
+
tag = self.roles[i % 2]
|
137 |
+
if message:
|
138 |
+
if i == 0:
|
139 |
+
ret += message + ' '
|
140 |
+
else:
|
141 |
+
ret += tag + ' ' + message + seps[i % 2]
|
142 |
+
else:
|
143 |
+
ret += tag
|
144 |
+
return ret
|
145 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
146 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
147 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
148 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
149 |
+
if system_prompt:
|
150 |
+
ret = system_prompt + self.sep
|
151 |
+
else:
|
152 |
+
ret = ''
|
153 |
+
|
154 |
+
for i, (role, message) in enumerate(self.messages):
|
155 |
+
if i % 2 == 0:
|
156 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
157 |
+
|
158 |
+
if message:
|
159 |
+
ret += f'{role}:{message}{self.sep}'
|
160 |
+
else:
|
161 |
+
ret += f'{role}:'
|
162 |
+
return ret
|
163 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
164 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
165 |
+
for role, message in self.messages:
|
166 |
+
if message:
|
167 |
+
ret += role + '\n' + message + self.sep + '\n'
|
168 |
+
else:
|
169 |
+
ret += role + '\n'
|
170 |
+
return ret
|
171 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
172 |
+
ret = ''
|
173 |
+
if self.system_message:
|
174 |
+
ret += system_prompt
|
175 |
+
for role, message in self.messages:
|
176 |
+
if message:
|
177 |
+
ret += role + '\n' + ' ' + message
|
178 |
+
else:
|
179 |
+
ret += role
|
180 |
+
return ret
|
181 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
182 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
183 |
+
seps = [self.sep, self.sep2]
|
184 |
+
ret = system_prompt
|
185 |
+
for i, (role, message) in enumerate(self.messages):
|
186 |
+
# if i % 2 == 0:
|
187 |
+
# ret += "<s>"
|
188 |
+
if message:
|
189 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
190 |
+
else:
|
191 |
+
ret += role + ':'
|
192 |
+
return ret
|
193 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
194 |
+
seps = [self.sep, self.sep2]
|
195 |
+
ret = system_prompt
|
196 |
+
for i, (role, message) in enumerate(self.messages):
|
197 |
+
if message:
|
198 |
+
ret += role + ':\n' + message + seps[i % 2]
|
199 |
+
if i % 2 == 1:
|
200 |
+
ret += '\n\n'
|
201 |
+
else:
|
202 |
+
ret += role + ':\n'
|
203 |
+
return ret
|
204 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
205 |
+
ret = system_prompt
|
206 |
+
for role, message in self.messages:
|
207 |
+
if message:
|
208 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
209 |
+
else:
|
210 |
+
ret += role + ': ' + '<s>'
|
211 |
+
return ret
|
212 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
213 |
+
ret = system_prompt + self.sep
|
214 |
+
for role, message in self.messages:
|
215 |
+
if message:
|
216 |
+
ret += role + ':\n' + message + self.sep
|
217 |
+
else:
|
218 |
+
ret += role + ':\n'
|
219 |
+
return ret
|
220 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
221 |
+
ret = ''
|
222 |
+
if self.system_message:
|
223 |
+
ret += system_prompt + self.sep
|
224 |
+
for role, message in self.messages:
|
225 |
+
if message:
|
226 |
+
ret += role + ': ' + message + self.sep
|
227 |
+
else:
|
228 |
+
ret += role + ':'
|
229 |
+
|
230 |
+
return ret
|
231 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
232 |
+
seps = [self.sep, self.sep2]
|
233 |
+
ret = self.system_message + seps[0]
|
234 |
+
for i, (role, message) in enumerate(self.messages):
|
235 |
+
if message:
|
236 |
+
ret += role + ': ' + message + seps[i % 2]
|
237 |
+
else:
|
238 |
+
ret += role + ':'
|
239 |
+
return ret
|
240 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
241 |
+
ret = system_prompt + self.sep
|
242 |
+
for role, message in self.messages:
|
243 |
+
if message:
|
244 |
+
if type(message) is tuple:
|
245 |
+
message, _, _ = message
|
246 |
+
ret += role + message + self.sep
|
247 |
+
else:
|
248 |
+
ret += role
|
249 |
+
return ret
|
250 |
+
else:
|
251 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
252 |
+
|
253 |
+
def set_system_message(self, system_message: str):
|
254 |
+
"""Set the system message."""
|
255 |
+
self.system_message = system_message
|
256 |
+
|
257 |
+
def append_message(self, role: str, message: str):
|
258 |
+
"""Append a new message."""
|
259 |
+
self.messages.append([role, message])
|
260 |
+
|
261 |
+
def update_last_message(self, message: str):
|
262 |
+
"""Update the last output.
|
263 |
+
|
264 |
+
The last message is typically set to be None when constructing the prompt,
|
265 |
+
so we need to update it in-place after getting the response from a model.
|
266 |
+
"""
|
267 |
+
self.messages[-1][1] = message
|
268 |
+
|
269 |
+
def to_gradio_chatbot(self):
|
270 |
+
"""Convert the conversation to gradio chatbot format."""
|
271 |
+
ret = []
|
272 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
273 |
+
if i % 2 == 0:
|
274 |
+
ret.append([msg, None])
|
275 |
+
else:
|
276 |
+
ret[-1][-1] = msg
|
277 |
+
return ret
|
278 |
+
|
279 |
+
def to_openai_api_messages(self):
|
280 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
281 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
282 |
+
|
283 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
284 |
+
if i % 2 == 0:
|
285 |
+
ret.append({'role': 'user', 'content': msg})
|
286 |
+
else:
|
287 |
+
if msg is not None:
|
288 |
+
ret.append({'role': 'assistant', 'content': msg})
|
289 |
+
return ret
|
290 |
+
|
291 |
+
def copy(self):
|
292 |
+
return Conversation(
|
293 |
+
name=self.name,
|
294 |
+
system_template=self.system_template,
|
295 |
+
system_message=self.system_message,
|
296 |
+
roles=self.roles,
|
297 |
+
messages=[[x, y] for x, y in self.messages],
|
298 |
+
offset=self.offset,
|
299 |
+
sep_style=self.sep_style,
|
300 |
+
sep=self.sep,
|
301 |
+
sep2=self.sep2,
|
302 |
+
stop_str=self.stop_str,
|
303 |
+
stop_token_ids=self.stop_token_ids,
|
304 |
+
)
|
305 |
+
|
306 |
+
def dict(self):
|
307 |
+
return {
|
308 |
+
'template_name': self.name,
|
309 |
+
'system_message': self.system_message,
|
310 |
+
'roles': self.roles,
|
311 |
+
'messages': self.messages,
|
312 |
+
'offset': self.offset,
|
313 |
+
}
|
314 |
+
|
315 |
+
|
316 |
+
# A global registry for all conversation templates
|
317 |
+
conv_templates: Dict[str, Conversation] = {}
|
318 |
+
|
319 |
+
|
320 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
321 |
+
"""Register a new conversation template."""
|
322 |
+
if not override:
|
323 |
+
assert (
|
324 |
+
template.name not in conv_templates
|
325 |
+
), f'{template.name} has been registered.'
|
326 |
+
|
327 |
+
conv_templates[template.name] = template
|
328 |
+
|
329 |
+
|
330 |
+
def get_conv_template(name: str) -> Conversation:
|
331 |
+
"""Get a conversation template."""
|
332 |
+
return conv_templates[name].copy()
|
333 |
+
|
334 |
+
|
335 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
336 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
337 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
338 |
+
# Therefore, they are completely equivalent during inference.
|
339 |
+
register_conv_template(
|
340 |
+
Conversation(
|
341 |
+
name='Hermes-2',
|
342 |
+
system_template='<|im_start|>system\n{system_message}',
|
343 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
344 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
345 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
346 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
347 |
+
sep_style=SeparatorStyle.MPT,
|
348 |
+
sep='<|im_end|>',
|
349 |
+
stop_str='<|endoftext|>',
|
350 |
+
)
|
351 |
+
)
|
352 |
+
|
353 |
+
|
354 |
+
register_conv_template(
|
355 |
+
Conversation(
|
356 |
+
name='internlm2-chat',
|
357 |
+
system_template='<|im_start|>system\n{system_message}',
|
358 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
359 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
360 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
361 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
362 |
+
sep_style=SeparatorStyle.MPT,
|
363 |
+
sep='<|im_end|>',
|
364 |
+
)
|
365 |
+
)
|
366 |
+
|
367 |
+
|
368 |
+
register_conv_template(
|
369 |
+
Conversation(
|
370 |
+
name='phi3-chat',
|
371 |
+
system_template='<|system|>\n{system_message}',
|
372 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
373 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
374 |
+
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
375 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
376 |
+
sep_style=SeparatorStyle.MPT,
|
377 |
+
sep='<|end|>',
|
378 |
+
)
|
379 |
+
)
|
380 |
+
|
381 |
+
|
382 |
+
register_conv_template(
|
383 |
+
Conversation(
|
384 |
+
name='internvl2_5',
|
385 |
+
system_template='<|im_start|>system\n{system_message}',
|
386 |
+
system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
387 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
388 |
+
sep_style=SeparatorStyle.MPT,
|
389 |
+
sep='<|im_end|>\n',
|
390 |
+
)
|
391 |
+
)
|
examples/image1.jpg
ADDED
examples/image2.jpg
ADDED
examples/red-panda.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
|
3 |
+
size 1867237
|
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": [
|
4 |
+
151644,
|
5 |
+
151645
|
6 |
+
],
|
7 |
+
"transformers_version": "4.45.1"
|
8 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d2bc505bd32a5f8a79b28a605e33082fb2426f34fc6f0864ab04e5726754680
|
3 |
+
size 4988569440
|
model-00002-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd4593a227b452278d00e7778f14d15d3630405703cf7c8cc889edf2343277d4
|
3 |
+
size 4937253584
|
model-00003-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4835f03c1b992b478338a71efaa95d4b4b97aac2c876ffdfd7ce9942080285b4
|
3 |
+
size 4903161648
|
model-00004-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:853222df86ed7947ac152a342468b80b7322c9fd65ba1d7f90367e00142b973c
|
3 |
+
size 4781670848
|
model-00005-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1feecc98acc2ddfe24680145e24bcb2f6c815b354412559e5a74de2a82995d84
|
3 |
+
size 4781670848
|
model-00006-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b972fbdeebaee7256887f7ddda6ab888c10497535cca5d9ac3c43dd72ce2f6ba
|
3 |
+
size 4964101824
|
model-00007-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:581802e3e2bcea6ab2b427eee02aee3355121fcea4ccd070a70cc12e0315cea6
|
3 |
+
size 4781637840
|
model-00008-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a6a83ddf44249352ca38aa75d5b589e3b4097baf89a0e20c00a0cd838e5ceff
|
3 |
+
size 4781670880
|
model-00009-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d32721bf8dd0e8df915870eed9e287a85800365b016250eae23dd4d8e26761f4
|
3 |
+
size 4781670880
|
model-00010-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c3fbea86caf606aa6a69b5e041c37b484a1c6868151d4b96d22e3c36b425072
|
3 |
+
size 4964101848
|
model-00011-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e02cf8e05b48fcfcb6585d59d6265c75ddd31806686d0cec7c1e2e01dbb2ff8
|
3 |
+
size 4781637856
|
model-00012-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5d5f67298b43f546284ec8acf9b004ea03869e660c75b497d8ad3ae86ab5fcb
|
3 |
+
size 4781670880
|
model-00013-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79171a76a8558c94ecfdb2fc5628f4981570ae45a887f20facf467fb8bfd7b4c
|
3 |
+
size 4781670880
|
model-00014-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e8666640e66d7853b9fdf6e658421f832e59bdda0b59f708ec0e5b01f4050c2
|
3 |
+
size 4964101848
|
model-00015-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62dd0e9b36e68f329eac1eedffbcabaa7388ed2a0ec77892e4b87bc91c2e3612
|
3 |
+
size 4781637856
|
model-00016-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25bc67eede01b0707c8a7830fb893c20699880837b30e22f3776552123f54ba8
|
3 |
+
size 4781670880
|
model-00017-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a5497de9a484b7beac13af57aaa24f0f667df61e067c8929d4ae28b158741bd
|
3 |
+
size 4781670880
|
model-00018-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5017ffba34e534e7b9a4add884c04823cc6ad1118101bad42fa44699210a544e
|
3 |
+
size 4964101848
|
model-00019-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6bc7457b8116d27ea077bd2f9872b51cd6b52f881d89c77bacbf883b636d7fe
|
3 |
+
size 4781637856
|
model-00020-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0638f44609e2b025397d3bc61b63116b27c51edd9e43f815ba9bf52e39357c9a
|
3 |
+
size 4781670880
|
model-00021-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f761f0a98c0291993fe7e8ba642c591c9e97cc3c38c63aa6dd8601a29012f94a
|
3 |
+
size 4781670880
|
model-00022-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d4d15e04d5220bc0810b3958d9368b96d8ceceeba48ad6623e12040cd8b71cc
|
3 |
+
size 4964101848
|
model-00023-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c7d9a45508cefe3585d462e09586b6b864cc197d03c812dac35ac6b2012f36a
|
3 |
+
size 4781637856
|
model-00024-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a965f9bdc412c5f996ea65bb21c98e23b2bc9b3a1788c34d160ce7f9087da2a9
|
3 |
+
size 4781670880
|
model-00025-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd6cf234b72cc742fdceddab65353f05024b1c0b3f9303647bd529d6c65a1f8f
|
3 |
+
size 4781670880
|
model-00026-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:292419030ae2b3db0b6e58ccf3405b750fd38a739f74039e563b051dd4421def
|
3 |
+
size 4964101848
|
model-00027-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71a83c800ba3d3e4663f520ab778d499fb4630cf49f6127f93ff06ce95d8087f
|
3 |
+
size 4781637856
|
model-00028-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c11d1fccc0780e081bb5ffb09332657f980bf83e472d1da3933632b01b73fa9
|
3 |
+
size 4781670880
|
model-00029-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:280ea1ed454a8745198b9c637597e99534474b26f1f2e1d2d56ee99162d77b30
|
3 |
+
size 4781670880
|
model-00030-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f85cad168c087d5c2b4bf9d888930811f69f5559b1103a6f25dc7f701a021ba0
|
3 |
+
size 4964101848
|
model-00031-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbc6f3caecf4f15e084d3193a27c36ee9d35083cd8088b8d9ae047459fa28d37
|
3 |
+
size 4781637856
|
model-00032-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef68300968d5f45d7b3ab76312f2fe224b9a14a3d6be1eb908350cb3fb19ac76
|
3 |
+
size 3995233856
|
model-00033-of-00033.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c4ea480599387ad1ce7faa6825807c8759ce577e4e2cca4bc1850d4f5a64920
|
3 |
+
size 2829044384
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from einops import rearrange
|
13 |
+
from timm.models.layers import DropPath
|
14 |
+
from torch import nn
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
17 |
+
BaseModelOutputWithPooling)
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
from .configuration_intern_vit import InternVisionConfig
|
22 |
+
|
23 |
+
try:
|
24 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
25 |
+
from flash_attn.flash_attn_interface import \
|
26 |
+
flash_attn_varlen_qkvpacked_func
|
27 |
+
has_flash_attn = True
|
28 |
+
except:
|
29 |
+
print('FlashAttention2 is not installed.')
|
30 |
+
has_flash_attn = False
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class FlashAttention(nn.Module):
|
36 |
+
"""Implement the scaled dot product attention with softmax.
|
37 |
+
Arguments
|
38 |
+
---------
|
39 |
+
softmax_scale: The temperature to use for the softmax attention.
|
40 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
41 |
+
runtime)
|
42 |
+
attention_dropout: The dropout rate to apply to the attention
|
43 |
+
(default: 0.0)
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
47 |
+
super().__init__()
|
48 |
+
self.softmax_scale = softmax_scale
|
49 |
+
self.dropout_p = attention_dropout
|
50 |
+
|
51 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
52 |
+
max_s=None, need_weights=False):
|
53 |
+
"""Implements the multihead softmax attention.
|
54 |
+
Arguments
|
55 |
+
---------
|
56 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
57 |
+
if unpadded: (nnz, 3, h, d)
|
58 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
59 |
+
"""
|
60 |
+
assert not need_weights
|
61 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
62 |
+
assert qkv.is_cuda
|
63 |
+
|
64 |
+
if cu_seqlens is None:
|
65 |
+
batch_size = qkv.shape[0]
|
66 |
+
seqlen = qkv.shape[1]
|
67 |
+
if key_padding_mask is None:
|
68 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
69 |
+
max_s = seqlen
|
70 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
71 |
+
device=qkv.device)
|
72 |
+
output = flash_attn_varlen_qkvpacked_func(
|
73 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
74 |
+
softmax_scale=self.softmax_scale, causal=causal
|
75 |
+
)
|
76 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
77 |
+
else:
|
78 |
+
nheads = qkv.shape[-2]
|
79 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
80 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
81 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
82 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
83 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
84 |
+
softmax_scale=self.softmax_scale, causal=causal
|
85 |
+
)
|
86 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
87 |
+
indices, batch_size, seqlen),
|
88 |
+
'b s (h d) -> b s h d', h=nheads)
|
89 |
+
else:
|
90 |
+
assert max_s is not None
|
91 |
+
output = flash_attn_varlen_qkvpacked_func(
|
92 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
93 |
+
softmax_scale=self.softmax_scale, causal=causal
|
94 |
+
)
|
95 |
+
|
96 |
+
return output, None
|
97 |
+
|
98 |
+
|
99 |
+
class InternRMSNorm(nn.Module):
|
100 |
+
def __init__(self, hidden_size, eps=1e-6):
|
101 |
+
super().__init__()
|
102 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
103 |
+
self.variance_epsilon = eps
|
104 |
+
|
105 |
+
def forward(self, hidden_states):
|
106 |
+
input_dtype = hidden_states.dtype
|
107 |
+
hidden_states = hidden_states.to(torch.float32)
|
108 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
109 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
110 |
+
return self.weight * hidden_states.to(input_dtype)
|
111 |
+
|
112 |
+
|
113 |
+
try:
|
114 |
+
from apex.normalization import FusedRMSNorm
|
115 |
+
|
116 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
117 |
+
|
118 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
119 |
+
except ImportError:
|
120 |
+
# using the normal InternRMSNorm
|
121 |
+
pass
|
122 |
+
except Exception:
|
123 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
124 |
+
pass
|
125 |
+
|
126 |
+
|
127 |
+
NORM2FN = {
|
128 |
+
'rms_norm': InternRMSNorm,
|
129 |
+
'layer_norm': nn.LayerNorm,
|
130 |
+
}
|
131 |
+
|
132 |
+
|
133 |
+
class InternVisionEmbeddings(nn.Module):
|
134 |
+
def __init__(self, config: InternVisionConfig):
|
135 |
+
super().__init__()
|
136 |
+
self.config = config
|
137 |
+
self.embed_dim = config.hidden_size
|
138 |
+
self.image_size = config.image_size
|
139 |
+
self.patch_size = config.patch_size
|
140 |
+
|
141 |
+
self.class_embedding = nn.Parameter(
|
142 |
+
torch.randn(1, 1, self.embed_dim),
|
143 |
+
)
|
144 |
+
|
145 |
+
self.patch_embedding = nn.Conv2d(
|
146 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
147 |
+
)
|
148 |
+
|
149 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
150 |
+
self.num_positions = self.num_patches + 1
|
151 |
+
|
152 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
153 |
+
|
154 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
155 |
+
target_dtype = pos_embed.dtype
|
156 |
+
pos_embed = pos_embed.float().reshape(
|
157 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
158 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
159 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
160 |
+
return pos_embed
|
161 |
+
|
162 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
163 |
+
target_dtype = self.patch_embedding.weight.dtype
|
164 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
165 |
+
batch_size, _, height, width = patch_embeds.shape
|
166 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
167 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
168 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
169 |
+
position_embedding = torch.cat([
|
170 |
+
self.position_embedding[:, :1, :],
|
171 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
172 |
+
], dim=1)
|
173 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
174 |
+
return embeddings
|
175 |
+
|
176 |
+
|
177 |
+
class InternAttention(nn.Module):
|
178 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
179 |
+
|
180 |
+
def __init__(self, config: InternVisionConfig):
|
181 |
+
super().__init__()
|
182 |
+
self.config = config
|
183 |
+
self.embed_dim = config.hidden_size
|
184 |
+
self.num_heads = config.num_attention_heads
|
185 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
186 |
+
if config.use_flash_attn and not has_flash_attn:
|
187 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
188 |
+
self.head_dim = self.embed_dim // self.num_heads
|
189 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
190 |
+
raise ValueError(
|
191 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
192 |
+
f' {self.num_heads}).'
|
193 |
+
)
|
194 |
+
|
195 |
+
self.scale = self.head_dim ** -0.5
|
196 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
197 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
198 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
199 |
+
|
200 |
+
self.qk_normalization = config.qk_normalization
|
201 |
+
|
202 |
+
if self.qk_normalization:
|
203 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
204 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
205 |
+
|
206 |
+
if self.use_flash_attn:
|
207 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
208 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
209 |
+
|
210 |
+
def _naive_attn(self, x):
|
211 |
+
B, N, C = x.shape
|
212 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
213 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
214 |
+
|
215 |
+
if self.qk_normalization:
|
216 |
+
B_, H_, N_, D_ = q.shape
|
217 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
218 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
219 |
+
|
220 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
221 |
+
attn = attn.softmax(dim=-1)
|
222 |
+
attn = self.attn_drop(attn)
|
223 |
+
|
224 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
225 |
+
x = self.proj(x)
|
226 |
+
x = self.proj_drop(x)
|
227 |
+
return x
|
228 |
+
|
229 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
230 |
+
qkv = self.qkv(x)
|
231 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
232 |
+
|
233 |
+
if self.qk_normalization:
|
234 |
+
q, k, v = qkv.unbind(2)
|
235 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
236 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
237 |
+
qkv = torch.stack([q, k, v], dim=2)
|
238 |
+
|
239 |
+
context, _ = self.inner_attn(
|
240 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
241 |
+
)
|
242 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
243 |
+
outs = self.proj_drop(outs)
|
244 |
+
return outs
|
245 |
+
|
246 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
247 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
248 |
+
return x
|
249 |
+
|
250 |
+
|
251 |
+
class InternMLP(nn.Module):
|
252 |
+
def __init__(self, config: InternVisionConfig):
|
253 |
+
super().__init__()
|
254 |
+
self.config = config
|
255 |
+
self.act = ACT2FN[config.hidden_act]
|
256 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
257 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
258 |
+
|
259 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
260 |
+
hidden_states = self.fc1(hidden_states)
|
261 |
+
hidden_states = self.act(hidden_states)
|
262 |
+
hidden_states = self.fc2(hidden_states)
|
263 |
+
return hidden_states
|
264 |
+
|
265 |
+
|
266 |
+
class InternVisionEncoderLayer(nn.Module):
|
267 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
268 |
+
super().__init__()
|
269 |
+
self.embed_dim = config.hidden_size
|
270 |
+
self.intermediate_size = config.intermediate_size
|
271 |
+
self.norm_type = config.norm_type
|
272 |
+
|
273 |
+
self.attn = InternAttention(config)
|
274 |
+
self.mlp = InternMLP(config)
|
275 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
276 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
277 |
+
|
278 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
279 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
280 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
281 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
282 |
+
|
283 |
+
def forward(
|
284 |
+
self,
|
285 |
+
hidden_states: torch.Tensor,
|
286 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
287 |
+
"""
|
288 |
+
Args:
|
289 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
290 |
+
"""
|
291 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
292 |
+
|
293 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
294 |
+
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
|
298 |
+
class InternVisionEncoder(nn.Module):
|
299 |
+
"""
|
300 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
301 |
+
[`InternEncoderLayer`].
|
302 |
+
|
303 |
+
Args:
|
304 |
+
config (`InternConfig`):
|
305 |
+
The corresponding vision configuration for the `InternEncoder`.
|
306 |
+
"""
|
307 |
+
|
308 |
+
def __init__(self, config: InternVisionConfig):
|
309 |
+
super().__init__()
|
310 |
+
self.config = config
|
311 |
+
# stochastic depth decay rule
|
312 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
313 |
+
self.layers = nn.ModuleList([
|
314 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
315 |
+
self.gradient_checkpointing = True
|
316 |
+
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
inputs_embeds,
|
320 |
+
output_hidden_states: Optional[bool] = None,
|
321 |
+
return_dict: Optional[bool] = None,
|
322 |
+
) -> Union[Tuple, BaseModelOutput]:
|
323 |
+
r"""
|
324 |
+
Args:
|
325 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
326 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
327 |
+
output_hidden_states (`bool`, *optional*):
|
328 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
329 |
+
for more detail.
|
330 |
+
return_dict (`bool`, *optional*):
|
331 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
332 |
+
"""
|
333 |
+
output_hidden_states = (
|
334 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
335 |
+
)
|
336 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
337 |
+
|
338 |
+
encoder_states = () if output_hidden_states else None
|
339 |
+
hidden_states = inputs_embeds
|
340 |
+
|
341 |
+
for idx, encoder_layer in enumerate(self.layers):
|
342 |
+
if output_hidden_states:
|
343 |
+
encoder_states = encoder_states + (hidden_states,)
|
344 |
+
if self.gradient_checkpointing and self.training:
|
345 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
346 |
+
encoder_layer,
|
347 |
+
hidden_states)
|
348 |
+
else:
|
349 |
+
layer_outputs = encoder_layer(
|
350 |
+
hidden_states,
|
351 |
+
)
|
352 |
+
hidden_states = layer_outputs
|
353 |
+
|
354 |
+
if output_hidden_states:
|
355 |
+
encoder_states = encoder_states + (hidden_states,)
|
356 |
+
|
357 |
+
if not return_dict:
|
358 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
359 |
+
return BaseModelOutput(
|
360 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
361 |
+
)
|
362 |
+
|
363 |
+
|
364 |
+
class InternVisionModel(PreTrainedModel):
|
365 |
+
main_input_name = 'pixel_values'
|
366 |
+
_supports_flash_attn_2 = True
|
367 |
+
config_class = InternVisionConfig
|
368 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
369 |
+
|
370 |
+
def __init__(self, config: InternVisionConfig):
|
371 |
+
super().__init__(config)
|
372 |
+
self.config = config
|
373 |
+
|
374 |
+
self.embeddings = InternVisionEmbeddings(config)
|
375 |
+
self.encoder = InternVisionEncoder(config)
|
376 |
+
|
377 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
378 |
+
pos_emb = self.embeddings.position_embedding
|
379 |
+
_, num_positions, embed_dim = pos_emb.shape
|
380 |
+
cls_emb = pos_emb[:, :1, :]
|
381 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
382 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
383 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
384 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
385 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
386 |
+
self.embeddings.image_size = new_size
|
387 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
388 |
+
|
389 |
+
def get_input_embeddings(self):
|
390 |
+
return self.embeddings
|
391 |
+
|
392 |
+
def forward(
|
393 |
+
self,
|
394 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
395 |
+
output_hidden_states: Optional[bool] = None,
|
396 |
+
return_dict: Optional[bool] = None,
|
397 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
398 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
399 |
+
output_hidden_states = (
|
400 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
401 |
+
)
|
402 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
403 |
+
|
404 |
+
if pixel_values is None and pixel_embeds is None:
|
405 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
406 |
+
|
407 |
+
if pixel_embeds is not None:
|
408 |
+
hidden_states = pixel_embeds
|
409 |
+
else:
|
410 |
+
if len(pixel_values.shape) == 4:
|
411 |
+
hidden_states = self.embeddings(pixel_values)
|
412 |
+
else:
|
413 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
414 |
+
encoder_outputs = self.encoder(
|
415 |
+
inputs_embeds=hidden_states,
|
416 |
+
output_hidden_states=output_hidden_states,
|
417 |
+
return_dict=return_dict,
|
418 |
+
)
|
419 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
420 |
+
pooled_output = last_hidden_state[:, 0, :]
|
421 |
+
|
422 |
+
if not return_dict:
|
423 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
424 |
+
|
425 |
+
return BaseModelOutputWithPooling(
|
426 |
+
last_hidden_state=last_hidden_state,
|
427 |
+
pooler_output=pooled_output,
|
428 |
+
hidden_states=encoder_outputs.hidden_states,
|
429 |
+
attentions=encoder_outputs.attentions,
|
430 |
+
)
|
modeling_internvl_chat.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
import transformers
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
15 |
+
Qwen2ForCausalLM)
|
16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import ModelOutput, logging
|
19 |
+
|
20 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
21 |
+
from .conversation import get_conv_template
|
22 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def version_cmp(v1, v2, op='eq'):
|
28 |
+
import operator
|
29 |
+
|
30 |
+
from packaging import version
|
31 |
+
op_func = getattr(operator, op)
|
32 |
+
return op_func(version.parse(v1), version.parse(v2))
|
33 |
+
|
34 |
+
|
35 |
+
class InternVLChatModel(PreTrainedModel):
|
36 |
+
config_class = InternVLChatConfig
|
37 |
+
main_input_name = 'pixel_values'
|
38 |
+
base_model_prefix = 'language_model'
|
39 |
+
_supports_flash_attn_2 = True
|
40 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
|
41 |
+
|
42 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
43 |
+
super().__init__(config)
|
44 |
+
|
45 |
+
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
46 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
47 |
+
patch_size = config.vision_config.patch_size
|
48 |
+
self.patch_size = patch_size
|
49 |
+
self.select_layer = config.select_layer
|
50 |
+
self.template = config.template
|
51 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
52 |
+
self.downsample_ratio = config.downsample_ratio
|
53 |
+
self.ps_version = config.ps_version
|
54 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
55 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
56 |
+
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
57 |
+
|
58 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
59 |
+
logger.info(f'ps_version: {self.ps_version}')
|
60 |
+
if vision_model is not None:
|
61 |
+
self.vision_model = vision_model
|
62 |
+
else:
|
63 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
64 |
+
if language_model is not None:
|
65 |
+
self.language_model = language_model
|
66 |
+
else:
|
67 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
68 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
69 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
70 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
71 |
+
else:
|
72 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
73 |
+
|
74 |
+
vit_hidden_size = config.vision_config.hidden_size
|
75 |
+
llm_hidden_size = config.llm_config.hidden_size
|
76 |
+
|
77 |
+
self.mlp1 = nn.Sequential(
|
78 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
79 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
80 |
+
nn.GELU(),
|
81 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
82 |
+
)
|
83 |
+
|
84 |
+
self.img_context_token_id = None
|
85 |
+
self.conv_template = get_conv_template(self.template)
|
86 |
+
self.system_message = self.conv_template.system_message
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
pixel_values: torch.FloatTensor,
|
91 |
+
input_ids: torch.LongTensor = None,
|
92 |
+
attention_mask: Optional[torch.Tensor] = None,
|
93 |
+
position_ids: Optional[torch.LongTensor] = None,
|
94 |
+
image_flags: Optional[torch.LongTensor] = None,
|
95 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
96 |
+
labels: Optional[torch.LongTensor] = None,
|
97 |
+
use_cache: Optional[bool] = None,
|
98 |
+
output_attentions: Optional[bool] = None,
|
99 |
+
output_hidden_states: Optional[bool] = None,
|
100 |
+
return_dict: Optional[bool] = None,
|
101 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
102 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
103 |
+
|
104 |
+
image_flags = image_flags.squeeze(-1)
|
105 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
106 |
+
|
107 |
+
vit_embeds = self.extract_feature(pixel_values)
|
108 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
109 |
+
vit_batch_size = pixel_values.shape[0]
|
110 |
+
|
111 |
+
B, N, C = input_embeds.shape
|
112 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
113 |
+
|
114 |
+
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
|
115 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
116 |
+
|
117 |
+
input_ids = input_ids.reshape(B * N)
|
118 |
+
selected = (input_ids == self.img_context_token_id)
|
119 |
+
try:
|
120 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
121 |
+
except Exception as e:
|
122 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
123 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
124 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
125 |
+
n_token = selected.sum()
|
126 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
127 |
+
|
128 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
129 |
+
|
130 |
+
outputs = self.language_model(
|
131 |
+
inputs_embeds=input_embeds,
|
132 |
+
attention_mask=attention_mask,
|
133 |
+
position_ids=position_ids,
|
134 |
+
past_key_values=past_key_values,
|
135 |
+
use_cache=use_cache,
|
136 |
+
output_attentions=output_attentions,
|
137 |
+
output_hidden_states=output_hidden_states,
|
138 |
+
return_dict=return_dict,
|
139 |
+
)
|
140 |
+
logits = outputs.logits
|
141 |
+
|
142 |
+
loss = None
|
143 |
+
if labels is not None:
|
144 |
+
# Shift so that tokens < n predict n
|
145 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
146 |
+
shift_labels = labels[..., 1:].contiguous()
|
147 |
+
# Flatten the tokens
|
148 |
+
loss_fct = CrossEntropyLoss()
|
149 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
150 |
+
shift_labels = shift_labels.view(-1)
|
151 |
+
# Enable model parallelism
|
152 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
153 |
+
loss = loss_fct(shift_logits, shift_labels)
|
154 |
+
|
155 |
+
if not return_dict:
|
156 |
+
output = (logits,) + outputs[1:]
|
157 |
+
return (loss,) + output if loss is not None else output
|
158 |
+
|
159 |
+
return CausalLMOutputWithPast(
|
160 |
+
loss=loss,
|
161 |
+
logits=logits,
|
162 |
+
past_key_values=outputs.past_key_values,
|
163 |
+
hidden_states=outputs.hidden_states,
|
164 |
+
attentions=outputs.attentions,
|
165 |
+
)
|
166 |
+
|
167 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
168 |
+
n, w, h, c = x.size()
|
169 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
170 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
171 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
172 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
173 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
174 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
175 |
+
int(c / (scale_factor * scale_factor)))
|
176 |
+
if self.ps_version == 'v1':
|
177 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
178 |
+
'which results in a transposed image.')
|
179 |
+
else:
|
180 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
181 |
+
return x
|
182 |
+
|
183 |
+
def extract_feature(self, pixel_values):
|
184 |
+
if self.select_layer == -1:
|
185 |
+
vit_embeds = self.vision_model(
|
186 |
+
pixel_values=pixel_values,
|
187 |
+
output_hidden_states=False,
|
188 |
+
return_dict=True).last_hidden_state
|
189 |
+
else:
|
190 |
+
vit_embeds = self.vision_model(
|
191 |
+
pixel_values=pixel_values,
|
192 |
+
output_hidden_states=True,
|
193 |
+
return_dict=True).hidden_states[self.select_layer]
|
194 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
195 |
+
|
196 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
197 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
198 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
199 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
200 |
+
vit_embeds = self.mlp1(vit_embeds)
|
201 |
+
return vit_embeds
|
202 |
+
|
203 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
204 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
205 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
206 |
+
if history is not None or return_history:
|
207 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
208 |
+
raise NotImplementedError
|
209 |
+
|
210 |
+
if image_counts is not None:
|
211 |
+
num_patches_list = image_counts
|
212 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
213 |
+
|
214 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
215 |
+
self.img_context_token_id = img_context_token_id
|
216 |
+
|
217 |
+
if verbose and pixel_values is not None:
|
218 |
+
image_bs = pixel_values.shape[0]
|
219 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
220 |
+
|
221 |
+
queries = []
|
222 |
+
for idx, num_patches in enumerate(num_patches_list):
|
223 |
+
question = questions[idx]
|
224 |
+
if pixel_values is not None and '<image>' not in question:
|
225 |
+
question = '<image>\n' + question
|
226 |
+
template = get_conv_template(self.template)
|
227 |
+
template.system_message = self.system_message
|
228 |
+
template.append_message(template.roles[0], question)
|
229 |
+
template.append_message(template.roles[1], None)
|
230 |
+
query = template.get_prompt()
|
231 |
+
|
232 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
233 |
+
query = query.replace('<image>', image_tokens, 1)
|
234 |
+
queries.append(query)
|
235 |
+
|
236 |
+
tokenizer.padding_side = 'left'
|
237 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
238 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
239 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
240 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
241 |
+
generation_config['eos_token_id'] = eos_token_id
|
242 |
+
generation_output = self.generate(
|
243 |
+
pixel_values=pixel_values,
|
244 |
+
input_ids=input_ids,
|
245 |
+
attention_mask=attention_mask,
|
246 |
+
**generation_config
|
247 |
+
)
|
248 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
249 |
+
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
|
250 |
+
return responses
|
251 |
+
|
252 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
253 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
254 |
+
verbose=False):
|
255 |
+
|
256 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
257 |
+
question = '<image>\n' + question
|
258 |
+
|
259 |
+
if num_patches_list is None:
|
260 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
261 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
262 |
+
|
263 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
264 |
+
self.img_context_token_id = img_context_token_id
|
265 |
+
|
266 |
+
template = get_conv_template(self.template)
|
267 |
+
template.system_message = self.system_message
|
268 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
269 |
+
|
270 |
+
history = [] if history is None else history
|
271 |
+
for (old_question, old_answer) in history:
|
272 |
+
template.append_message(template.roles[0], old_question)
|
273 |
+
template.append_message(template.roles[1], old_answer)
|
274 |
+
template.append_message(template.roles[0], question)
|
275 |
+
template.append_message(template.roles[1], None)
|
276 |
+
query = template.get_prompt()
|
277 |
+
|
278 |
+
if verbose and pixel_values is not None:
|
279 |
+
image_bs = pixel_values.shape[0]
|
280 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
281 |
+
|
282 |
+
for num_patches in num_patches_list:
|
283 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
284 |
+
query = query.replace('<image>', image_tokens, 1)
|
285 |
+
|
286 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
287 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
288 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
289 |
+
generation_config['eos_token_id'] = eos_token_id
|
290 |
+
generation_output = self.generate(
|
291 |
+
pixel_values=pixel_values,
|
292 |
+
input_ids=input_ids,
|
293 |
+
attention_mask=attention_mask,
|
294 |
+
**generation_config
|
295 |
+
)
|
296 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
297 |
+
response = response.split(template.sep.strip())[0].strip()
|
298 |
+
history.append((question, response))
|
299 |
+
if return_history:
|
300 |
+
return response, history
|
301 |
+
else:
|
302 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
303 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
304 |
+
if verbose:
|
305 |
+
print(query_to_print, response)
|
306 |
+
return response
|
307 |
+
|
308 |
+
@torch.no_grad()
|
309 |
+
def generate(
|
310 |
+
self,
|
311 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
312 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
313 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
314 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
315 |
+
generation_config: Optional[GenerationConfig] = None,
|
316 |
+
output_hidden_states: Optional[bool] = None,
|
317 |
+
**generate_kwargs,
|
318 |
+
) -> torch.LongTensor:
|
319 |
+
|
320 |
+
assert self.img_context_token_id is not None
|
321 |
+
if pixel_values is not None:
|
322 |
+
if visual_features is not None:
|
323 |
+
vit_embeds = visual_features
|
324 |
+
else:
|
325 |
+
vit_embeds = self.extract_feature(pixel_values)
|
326 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
327 |
+
B, N, C = input_embeds.shape
|
328 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
329 |
+
|
330 |
+
input_ids = input_ids.reshape(B * N)
|
331 |
+
selected = (input_ids == self.img_context_token_id)
|
332 |
+
assert selected.sum() != 0
|
333 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
334 |
+
|
335 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
336 |
+
else:
|
337 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
338 |
+
|
339 |
+
outputs = self.language_model.generate(
|
340 |
+
inputs_embeds=input_embeds,
|
341 |
+
attention_mask=attention_mask,
|
342 |
+
generation_config=generation_config,
|
343 |
+
output_hidden_states=output_hidden_states,
|
344 |
+
use_cache=True,
|
345 |
+
**generate_kwargs,
|
346 |
+
)
|
347 |
+
|
348 |
+
return outputs
|
runs/Dec20_01-31-43_HOST-10-140-60-152/events.out.tfevents.1734630163.HOST-10-140-60-152.111402.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34c31c433c6d78253499b11649944aafae78eb85f1bafd57dcb266b8b6c334c2
|
3 |
+
size 701372
|