czczup commited on
Commit
9b19153
·
1 Parent(s): 58b8706

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -6
README.md CHANGED
@@ -9,17 +9,24 @@ datasets:
9
  - wanng/wukong100m
10
  ---
11
 
12
- # Model card for InternViT-6B-224px
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  ## Model Details
15
  - **Model Type:** feature backbone
16
  - **Model Stats:**
17
  - Params (M): 5903
18
  - Image size: 224 x 224
19
- - **Papers:**
20
- - InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks
21
- - **GitHub:**
22
- - https://github.com/OpenGVLab/InternVL
23
  - **Pretrain Dataset:** LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi
24
 
25
  ## Model Usage
@@ -45,4 +52,22 @@ pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
45
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
46
 
47
  outputs = model(pixel_values)
48
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - wanng/wukong100m
10
  ---
11
 
12
+ # Model Card for InternViT-6B-224px
13
+
14
+ ## What is InternVL?
15
+
16
+ \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\]
17
+
18
+ InternVL scales up the ViT to _**6B parameters**_ and aligns it with LLM.
19
+
20
+ It is trained using web-scale, noisy image-text pairs. The data are all publicly available and comprise multilingual content, including LAION-en, LAION-multi, LAION-COCO, COYO, Wukong, CC12M, CC3M, and SBU.
21
+
22
+ It is _**the largest open-source vision/vision-language foundation model (14B)**_ to date, achieving _**32 state-of-the-art**_ performances on a wide range of tasks such as visual perception, cross-modal retrieval, multimodal dialogue, etc.
23
+
24
 
25
  ## Model Details
26
  - **Model Type:** feature backbone
27
  - **Model Stats:**
28
  - Params (M): 5903
29
  - Image size: 224 x 224
 
 
 
 
30
  - **Pretrain Dataset:** LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi
31
 
32
  ## Model Usage
 
52
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
53
 
54
  outputs = model(pixel_values)
55
+ ```
56
+
57
+ ## Citation
58
+
59
+ If you find this project useful in your research, please consider cite:
60
+
61
+ ```BibTeX
62
+ @article{chen2023internvl,
63
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
64
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
65
+ journal={arXiv preprint arXiv:2312.14238},
66
+ year={2023}
67
+ }
68
+ ```
69
+
70
+
71
+ ## Acknowledgement
72
+
73
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!