File size: 4,499 Bytes
3d01b64
 
002eeca
 
 
 
 
 
 
2c6e7bf
fea8642
 
80480a5
3d01b64
002eeca
24c2ed6
002eeca
c936f55
d149ff5
c936f55
002eeca
2e39173
 
 
 
8128d01
002eeca
 
08c3036
002eeca
 
 
a16e917
1922055
002eeca
c936f55
 
 
 
002eeca
 
 
 
 
 
 
a16e917
002eeca
 
 
 
 
 
a16e917
002eeca
 
 
 
 
 
 
 
 
08c3036
002eeca
 
c936f55
 
 
 
 
 
2e39173
 
 
 
 
 
d149ff5
 
 
 
 
 
c936f55
 
 
 
 
 
 
002eeca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
datasets:
- laion/laion2B-en
- laion/laion-coco
- laion/laion2B-multi
- kakaobrain/coyo-700m
- conceptual_captions
- wanng/wukong100m
pipeline_tag: image-feature-extraction
base_model: OpenGVLab/InternViT-6B-224px
base_model_relation: finetune
new_version: OpenGVLab/InternViT-6B-448px-V2_5
---

# InternViT-6B-448px-V1-0

[\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL)  [\[πŸ“œ InternVL 1.0\]](https://huggingface.co/papers/2312.14238)  [\[πŸ“œ InternVL 1.5\]](https://huggingface.co/papers/2404.16821)  [\[πŸ“œ Mini-InternVL\]](https://arxiv.org/abs/2410.16261)  [\[πŸ“œ InternVL 2.5\]](https://huggingface.co/papers/2412.05271)

[\[πŸ†• Blog\]](https://internvl.github.io/blog/)  [\[πŸ—¨οΈ Chat Demo\]](https://internvl.opengvlab.com/)  [\[πŸ€— HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL)  [\[πŸš€ Quick Start\]](#quick-start)  [\[πŸ“– Documents\]](https://internvl.readthedocs.io/en/latest/)

<div align="center">
  <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
</div>

We release InternViT-6B-448px-V1-0, which is integrated into [InternVL-Chat-V1-1](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1). In this update, we explored increasing the resolution to 448x448, enhancing Optical Character Recognition (OCR) capabilities, and improving support for Chinese conversations. For examples of the enhanced capabilities, please refer to the [LINK](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1#examples).

## Model Details
- **Model Type:** vision foundation model, feature backbone
- **Model Stats:**
  - Params (M): 5903
  - Image size: 448 x 448
- **Pretrain Dataset:** LAION-en, LAION-COCO, COYO, CC12M, CC3M, SBU, Wukong, LAION-multi, OCR-related datasets.
- **Note:** This model has 48 blocks, and we found that using the output after the fourth-to-last block worked best for MLLM. Therefore, when building a MLLM with this model, **please use the features from the fourth-to-last layer.**

## Quick Start

> \[!Warning\]
> 🚨 Note: In our experience, the InternViT V2.5 series is better suited for building MLLMs than traditional computer vision tasks.

```python
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor

model = AutoModel.from_pretrained(
    'OpenGVLab/InternViT-6B-448px-V1-0',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image = Image.open('./examples/image1.jpg').convert('RGB')

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-0')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

outputs = model(pixel_values)
```

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{chen2024expanding,
  title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
  author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
  journal={arXiv preprint arXiv:2412.05271},
  year={2024}
}
@article{gao2024mini,
  title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
  author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
  journal={arXiv preprint arXiv:2410.16261},
  year={2024}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}
@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
```