File size: 18,201 Bytes
e8cd4f2
 
396640e
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5b24e
e8cd4f2
0b5b24e
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5b24e
e8cd4f2
 
 
 
0b5b24e
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
0b5b24e
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5b24e
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3bb826
 
 
 
 
 
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5b24e
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3bb826
e8cd4f2
 
 
c3bb826
 
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7703a0b
e8cd4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from timm.models.layers import DropPath
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutput,
                                           BaseModelOutputWithPooling)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_intern_vit import InternVisionConfig

try:
    try:  # v1
        from flash_attn.flash_attn_interface import \
            flash_attn_unpadded_qkvpacked_func
    except:  # v2
        from flash_attn.flash_attn_interface import \
            flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func

    from flash_attn.bert_padding import pad_input, unpad_input

    has_flash_attn = True
except:
    print('FlashAttention is not installed.')
    has_flash_attn = False

logger = logging.get_logger(__name__)


class FlashAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """

    def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
        super().__init__()
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
                max_s=None, need_weights=False):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
                if unpadded: (nnz, 3, h, d)
            key_padding_mask: a bool tensor of shape (B, S)
        """
        assert not need_weights
        assert qkv.dtype in [torch.float16, torch.bfloat16]
        assert qkv.is_cuda

        if cu_seqlens is None:
            batch_size = qkv.shape[0]
            seqlen = qkv.shape[1]
            if key_padding_mask is None:
                qkv = rearrange(qkv, 'b s ... -> (b s) ...')
                max_s = seqlen
                cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                          device=qkv.device)
                output = flash_attn_unpadded_qkvpacked_func(
                    qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
                    softmax_scale=self.softmax_scale, causal=causal
                )
                output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
            else:
                nheads = qkv.shape[-2]
                x = rearrange(qkv, 'b s three h d -> b s (three h d)')
                x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
                x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
                output_unpad = flash_attn_unpadded_qkvpacked_func(
                    x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
                    softmax_scale=self.softmax_scale, causal=causal
                )
                output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
                                             indices, batch_size, seqlen),
                                   'b s (h d) -> b s h d', h=nheads)
        else:
            assert max_s is not None
            output = flash_attn_unpadded_qkvpacked_func(
                qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
                softmax_scale=self.softmax_scale, causal=causal
            )

        return output, None


class InternRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


try:
    from apex.normalization import FusedRMSNorm

    InternRMSNorm = FusedRMSNorm  # noqa

    logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
except ImportError:
    # using the normal InternRMSNorm
    pass
except Exception:
    logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
    pass


NORM2FN = {
    'rms_norm': InternRMSNorm,
    'layer_norm': nn.LayerNorm,
}


class InternVisionEmbeddings(nn.Module):
    def __init__(self, config: InternVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.class_embedding = nn.Parameter(
            torch.randn(1, 1, self.embed_dim),
        )

        self.patch_embedding = nn.Conv2d(
            in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1

        self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))

    def _get_pos_embed(self, pos_embed, H, W):
        target_dtype = pos_embed.dtype
        pos_embed = pos_embed.float().reshape(
            1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
        pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
            reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
        return pos_embed

    def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
        target_dtype = self.patch_embedding.weight.dtype
        patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, channel, width, height]
        batch_size, _, height, width = patch_embeds.shape
        patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
        class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
        embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
        position_embedding = torch.cat([
            self.position_embedding[:, :1, :],
            self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
        ], dim=1)
        embeddings = embeddings + position_embedding.to(target_dtype)
        return embeddings


class InternAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: InternVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.use_flash_attn = config.use_flash_attn and has_flash_attn
        if config.use_flash_attn and not has_flash_attn:
            print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
                f' {self.num_heads}).'
            )

        self.scale = self.head_dim ** -0.5
        self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
        self.attn_drop = nn.Dropout(config.attention_dropout)
        self.proj_drop = nn.Dropout(config.dropout)

        self.qk_normalization = config.qk_normalization

        if self.qk_normalization:
            self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
            self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)

        if self.use_flash_attn:
            self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
        self.proj = nn.Linear(self.embed_dim, self.embed_dim)

    def _naive_attn(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        if self.qk_normalization:
            B_, H_, N_, D_ = q.shape
            q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
            k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)

        attn = ((q * self.scale) @ k.transpose(-2, -1))
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
        qkv = self.qkv(x)
        qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)

        if self.qk_normalization:
            q, k, v = qkv.unbind(2)
            q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
            k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
            qkv = torch.stack([q, k, v], dim=2)

        context, _ = self.inner_attn(
            qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
        )
        outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
        outs = self.proj_drop(outs)
        return outs

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
        return x


class InternMLP(nn.Module):
    def __init__(self, config: InternVisionConfig):
        super().__init__()
        self.config = config
        self.act = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class InternVisionEncoderLayer(nn.Module):
    def __init__(self, config: InternVisionConfig, drop_path_rate: float):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.norm_type = config.norm_type

        self.attn = InternAttention(config)
        self.mlp = InternMLP(config)
        self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
        self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)

        self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
        self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
        self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
        self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

    def forward(
            self,
            hidden_states: torch.Tensor,
    ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
        """
        hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)

        hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)

        return hidden_states


class InternVisionEncoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`InternEncoderLayer`].

    Args:
        config (`InternConfig`):
            The corresponding vision configuration for the `InternEncoder`.
    """

    def __init__(self, config: InternVisionConfig):
        super().__init__()
        self.config = config
        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
        self.layers = nn.ModuleList([
            InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
        self.gradient_checkpointing = True

    def forward(
            self,
            inputs_embeds,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Embedded representation of the inputs. Should be float, not int tokens.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_states = () if output_hidden_states else None
        hidden_states = inputs_embeds

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = torch.utils.checkpoint.checkpoint(
                    encoder_layer,
                    hidden_states)
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                )
            hidden_states = layer_outputs

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states
        )


class InternVisionModel(PreTrainedModel):
    main_input_name = 'pixel_values'
    _supports_flash_attn_2 = True
    config_class = InternVisionConfig
    _no_split_modules = ['InternVisionEncoderLayer']

    def __init__(self, config: InternVisionConfig):
        super().__init__(config)
        self.config = config

        self.embeddings = InternVisionEmbeddings(config)
        self.encoder = InternVisionEncoder(config)

    def resize_pos_embeddings(self, old_size, new_size, patch_size):
        pos_emb = self.embeddings.position_embedding
        _, num_positions, embed_dim = pos_emb.shape
        cls_emb = pos_emb[:, :1, :]
        pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
        pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
        pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
        pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
        self.embeddings.position_embedding = nn.Parameter(pos_emb)
        self.embeddings.image_size = new_size
        logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))

    def get_input_embeddings(self):
        return self.embeddings

    def forward(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            pixel_embeds: Optional[torch.FloatTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None and pixel_embeds is None:
            raise ValueError('You have to specify pixel_values or pixel_embeds')

        if pixel_embeds is not None:
            hidden_states = pixel_embeds
        else:
            if len(pixel_values.shape) == 4:
                hidden_states = self.embeddings(pixel_values)
            else:
                raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        last_hidden_state = encoder_outputs.last_hidden_state
        pooled_output = last_hidden_state[:, 0, :]

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )