czczup commited on
Commit
dff5ce4
1 Parent(s): 38b1475

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +237 -3
README.md CHANGED
@@ -1,3 +1,237 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - laion/laion2B-en
5
+ - laion/laion-coco
6
+ - laion/laion2B-multi
7
+ - kakaobrain/coyo-700m
8
+ - conceptual_captions
9
+ - wanng/wukong100m
10
+ pipeline_tag: visual-question-answering
11
+ ---
12
+
13
+ # Model Card for Mini-InternVL-Chat-V1.5
14
+ <p align="center">
15
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/D60YzQBIzvoCvLRp2gZ0A.jpeg" alt="Image Description" width="300" height="300" />
16
+ </p>
17
+
18
+ > _Two interns holding hands, symbolizing the integration of InternViT and InternLM._
19
+
20
+ \[[InternVL 1.5 Technical Report](https://arxiv.org/abs/2404.16821)\] \[[CVPR Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
21
+
22
+ We introduce InternVL 1.5, an open-source multimodal large language model (MLLM) to bridge the capability gap between open-source and proprietary commercial models in multimodal understanding.
23
+ We introduce three simple designs:
24
+ 1. Strong Vision Encoder: we explored a continuous learning strategy for the large-scale vision foundation model---InternViT-6B, boosting its visual understanding capabilities, and making it can be transferred and reused in different LLMs.
25
+ 2. Dynamic High-Resolution: we divide images into tiles ranging from 1 to 40 of 448 &times; 448 pixels according to the aspect ratio and resolution of the input images, which supports up to 4K resolution input.
26
+ 3. High-Quality Bilingual Dataset: we carefully collected a high-quality bilingual dataset that covers common scenes, document images, and annotated them with English and Chinese question-answer pairs, significantly enhancing performance in OCR- and Chinese-related tasks.
27
+
28
+
29
+ ## Model Details
30
+ - **Model Type:** multimodal large language model (MLLM)
31
+ - **Model Stats:**
32
+ - Architecture: InternViT-300M-448px + MLP + [InternLM2-Chat-1.8B](https://huggingface.co/internlm/internlm2-chat-1_8b)
33
+ - Image size: dynamic resolution, max to 40 tiles of 448 x 448 (4K resolution).
34
+ - Params: 25.5B
35
+
36
+ - **Training Strategy:**
37
+ - Learnable component in the pretraining stage: ViT + MLP
38
+ - Learnable component in the finetuning stage: ViT + MLP + LLM
39
+ - For more details on training hyperparameters, take a look at our code: [pretrain]() | [finetune]()
40
+
41
+ ## Released Models
42
+
43
+ | Model | Vision Foundation Model | Release Date |Note |
44
+ | :---------------------------------------------------------:|:--------------------------------------------------------------------------: |:----------------------:| :---------------------------------- |
45
+ | InternVL-Chat-V1.5(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5)) | InternViT-6B-448px-V1-5(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5)) |2024.04.18 | support 4K image; super strong OCR; Approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc. (🔥new)|
46
+ | InternVL-Chat-V1.2-Plus(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus) ) |InternViT-6B-448px-V1-2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)) |2024.02.21 | more SFT data and stronger |
47
+ | InternVL-Chat-V1.2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) ) |InternViT-6B-448px-V1-2(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2)) |2024.02.11 | scaling up LLM to 34B |
48
+ | InternVL-Chat-V1.1(🤗 [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)) |InternViT-6B-448px-V1-0(🤗 [HF link](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-0)) |2024.01.24 | support Chinese and stronger OCR |
49
+
50
+ ## Architecture
51
+
52
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/YLvX3V-L0kwsyRn3Lhciw.png)
53
+
54
+ ## Performance
55
+
56
+ TODO
57
+
58
+ ## Examples
59
+
60
+ TODO
61
+
62
+ ## Model Usage
63
+
64
+ We provide an example code to run Mini-InternVL-Chat-V1.5 using `transformers`.
65
+
66
+ You also can use our [online demo](https://internvl.opengvlab.com/) for a quick experience of this model.
67
+
68
+ > Please use transformers==4.37.2 to ensure the model works normally.
69
+
70
+ ```python
71
+ from transformers import AutoTokenizer, AutoModel
72
+ import torch
73
+ import torchvision.transforms as T
74
+ from PIL import Image
75
+
76
+ from torchvision.transforms.functional import InterpolationMode
77
+
78
+
79
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
80
+ IMAGENET_STD = (0.229, 0.224, 0.225)
81
+
82
+
83
+ def build_transform(input_size):
84
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
85
+ transform = T.Compose([
86
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
87
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
88
+ T.ToTensor(),
89
+ T.Normalize(mean=MEAN, std=STD)
90
+ ])
91
+ return transform
92
+
93
+
94
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
95
+ best_ratio_diff = float('inf')
96
+ best_ratio = (1, 1)
97
+ area = width * height
98
+ for ratio in target_ratios:
99
+ target_aspect_ratio = ratio[0] / ratio[1]
100
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
101
+ if ratio_diff < best_ratio_diff:
102
+ best_ratio_diff = ratio_diff
103
+ best_ratio = ratio
104
+ elif ratio_diff == best_ratio_diff:
105
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
106
+ best_ratio = ratio
107
+ return best_ratio
108
+
109
+
110
+ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
111
+ orig_width, orig_height = image.size
112
+ aspect_ratio = orig_width / orig_height
113
+
114
+ # calculate the existing image aspect ratio
115
+ target_ratios = set(
116
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
117
+ i * j <= max_num and i * j >= min_num)
118
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
119
+
120
+ # find the closest aspect ratio to the target
121
+ target_aspect_ratio = find_closest_aspect_ratio(
122
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
123
+
124
+ # calculate the target width and height
125
+ target_width = image_size * target_aspect_ratio[0]
126
+ target_height = image_size * target_aspect_ratio[1]
127
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
128
+
129
+ # resize the image
130
+ resized_img = image.resize((target_width, target_height))
131
+ processed_images = []
132
+ for i in range(blocks):
133
+ box = (
134
+ (i % (target_width // image_size)) * image_size,
135
+ (i // (target_width // image_size)) * image_size,
136
+ ((i % (target_width // image_size)) + 1) * image_size,
137
+ ((i // (target_width // image_size)) + 1) * image_size
138
+ )
139
+ # split the image
140
+ split_img = resized_img.crop(box)
141
+ processed_images.append(split_img)
142
+ assert len(processed_images) == blocks
143
+ if use_thumbnail and len(processed_images) != 1:
144
+ thumbnail_img = image.resize((image_size, image_size))
145
+ processed_images.append(thumbnail_img)
146
+ return processed_images
147
+
148
+
149
+ def load_image(image_file, input_size=448, max_num=6):
150
+ image = Image.open(image_file).convert('RGB')
151
+ transform = build_transform(input_size=input_size)
152
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
153
+ pixel_values = [transform(image) for image in images]
154
+ pixel_values = torch.stack(pixel_values)
155
+ return pixel_values
156
+
157
+
158
+ path = "OpenGVLab/Mini-InternVL-Chat-V1-5"
159
+ model = AutoModel.from_pretrained(
160
+ path,
161
+ torch_dtype=torch.bfloat16,
162
+ low_cpu_mem_usage=True,
163
+ trust_remote_code=True).eval().cuda()
164
+
165
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
166
+ # set the max number of tiles in `max_num`
167
+ pixel_values = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
168
+
169
+ generation_config = dict(
170
+ num_beams=1,
171
+ max_new_tokens=512,
172
+ do_sample=False,
173
+ )
174
+
175
+ # single-round single-image conversation
176
+ question = "请详细描述图片" # Please describe the picture in detail
177
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
178
+ print(question, response)
179
+
180
+ # multi-round single-image conversation
181
+ question = "请详细描述图片" # Please describe the picture in detail
182
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
183
+ print(question, response)
184
+
185
+ question = "请根据图片写一首诗" # Please write a poem according to the picture
186
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
187
+ print(question, response)
188
+
189
+ # multi-round multi-image conversation
190
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
191
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
192
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
193
+
194
+ question = "详细描述这两张图片" # Describe the two pictures in detail
195
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
196
+ print(question, response)
197
+
198
+ question = "这两张图片的相同点和区别分别是什么" # What are the similarities and differences between these two pictures
199
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
200
+ print(question, response)
201
+
202
+ # batch inference (single image per sample)
203
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=6).to(torch.bfloat16).cuda()
204
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=6).to(torch.bfloat16).cuda()
205
+ image_counts = [pixel_values1.size(0), pixel_values2.size(0)]
206
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
207
+
208
+ questions = ["Describe the image in detail."] * len(image_counts)
209
+ responses = model.batch_chat(tokenizer, pixel_values,
210
+ image_counts=image_counts,
211
+ questions=questions,
212
+ generation_config=generation_config)
213
+ for question, response in zip(questions, responses):
214
+ print(question)
215
+ print(response)
216
+ ```
217
+
218
+ ## Citation
219
+
220
+ If you find this project useful in your research, please consider citing:
221
+
222
+ ```BibTeX
223
+ @article{chen2023internvl,
224
+ title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
225
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
226
+ journal={arXiv preprint arXiv:2312.14238},
227
+ year={2023}
228
+ }
229
+ ```
230
+
231
+ ## License
232
+
233
+ This project is released under the MIT license.
234
+
235
+ ## Acknowledgement
236
+
237
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!