File size: 8,791 Bytes
61bca4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tokenization classes for InternLM."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple

import sentencepiece as spm
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging

logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}

PRETRAINED_VOCAB_FILES_MAP = {}


# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
class InternLM2Tokenizer(PreTrainedTokenizer):
    """
    Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.

    Args:
        vocab_file (`str`):
            Path to the vocabulary file.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    model_input_names = ['input_ids', 'attention_mask']
    _auto_class = 'AutoTokenizer'

    def __init__(
        self,
        vocab_file,
        unk_token='<unk>',
        bos_token='<s>',
        eos_token='</s>',
        pad_token='</s>',
        sp_model_kwargs: Optional[Dict[str, Any]] = None,
        add_bos_token=True,
        add_eos_token=False,
        decode_with_prefix_space=False,
        clean_up_tokenization_spaces=False,
        **kwargs,
    ):
        self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
        self.vocab_file = vocab_file
        self.add_bos_token = add_bos_token
        self.add_eos_token = add_eos_token
        self.decode_with_prefix_space = decode_with_prefix_space
        self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
        self.sp_model.Load(vocab_file)
        self._no_prefix_space_tokens = None
        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            pad_token=pad_token,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    @property
    def no_prefix_space_tokens(self):
        if self._no_prefix_space_tokens is None:
            vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
            self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
        return self._no_prefix_space_tokens

    @property
    def vocab_size(self):
        """Returns vocab size"""
        return self.sp_model.get_piece_size()

    @property
    def bos_token_id(self) -> Optional[int]:
        return self.sp_model.bos_id()

    @property
    def eos_token_id(self) -> Optional[int]:
        return self.sp_model.eos_id()

    def get_vocab(self):
        """Returns vocab as a dict"""
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def _tokenize(self, text):
        """Returns a tokenized string."""
        return self.sp_model.encode(text, out_type=str)

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.sp_model.piece_to_id(token)

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        token = self.sp_model.IdToPiece(index)
        return token

    def _maybe_add_prefix_space(self, tokens, decoded):
        if tokens and tokens[0] not in self.no_prefix_space_tokens:
            return ' ' + decoded
        else:
            return decoded

    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        current_sub_tokens = []
        out_string = ''
        prev_is_special = False
        for token in tokens:
            # make sure that special tokens are not decoded using sentencepiece model
            if token in self.all_special_tokens:
                if not prev_is_special:
                    out_string += ' '
                out_string += self.sp_model.decode(current_sub_tokens) + token
                prev_is_special = True
                current_sub_tokens = []
            else:
                current_sub_tokens.append(token)
                prev_is_special = False
        out_string += self.sp_model.decode(current_sub_tokens)
        out_string = self.clean_up_tokenization(out_string)
        out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
        return out_string[1:]

    def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
        """
        Save the vocabulary and special tokens file to a directory.

        Args:
            save_directory (`str`):
                The directory in which to save the vocabulary.

        Returns:
            `Tuple(str)`: Paths to the files saved.
        """
        if not os.path.isdir(save_directory):
            logger.error(f'Vocabulary path ({save_directory}) should be a directory')
            return
        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
            copyfile(self.vocab_file, out_vocab_file)
        elif not os.path.isfile(self.vocab_file):
            with open(out_vocab_file, 'wb') as fi:
                content_spiece_model = self.sp_model.serialized_model_proto()
                fi.write(content_spiece_model)

        return (out_vocab_file,)

    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        if self.add_bos_token:
            bos_token_ids = [self.bos_token_id]
        else:
            bos_token_ids = []

        output = bos_token_ids + token_ids_0

        if token_ids_1 is not None:
            output = output + token_ids_1

        if self.add_eos_token:
            output = output + [self.eos_token_id]

        return output

    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]

    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
        use of token type ids, therefore a list of zeros is returned.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of zeros.
        """
        eos = [self.eos_token_id]

        if token_ids_1 is None:
            return len(token_ids_0 + eos) * [0]
        return len(token_ids_0 + eos + token_ids_1 + eos) * [0]