File size: 19,120 Bytes
d8210be
 
 
 
 
 
 
 
 
 
 
 
 
 
cd529ff
d8210be
 
 
 
88189f6
d8210be
 
 
 
 
 
 
 
 
1739565
e4862f8
 
d8210be
 
 
cd529ff
d8210be
 
 
 
 
 
 
cd529ff
d8210be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c63f40
d8210be
b190a1c
d8210be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0ddf17
d8210be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c20d5
d8210be
a4d0762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8210be
 
 
 
 
 
 
 
 
 
 
 
82e212b
d8210be
 
a0ddf17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8210be
 
 
 
 
 
 
 
d6377cc
d8210be
d6377cc
d8210be
d6377cc
d8210be
 
 
 
 
 
d6377cc
d8210be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6377cc
d8210be
 
 
3c63f40
d8210be
3c63f40
d8210be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82e212b
d8210be
 
a0ddf17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8210be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
---
license: mit
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
  - internlm/internlm2-chat-1_8b
base_model_relation: merge
language:
  - multilingual
tags:
  - internvl
  - vision
  - ocr
  - custom_code
  - moe
---

# Mono-InternVL-2B

[\[⭐️Project Page\]](https://internvl.github.io/blog/2024-10-10-Mono-InternVL/) [\[📜 Mono-InternVL Paper\]](https://arxiv.org/abs/2410.08202) [\[📝 公众号报道\]](https://mp.weixin.qq.com/s/FmjG0Gp5ow7mm2Vzd9ppPg) [\[🚀 Quick Start\]](#quick-start)

[切换至中文版](#简介)

<a id="radar"></a>

![image/png](images/fig1.jpg)

![image/png](images/fig2.jpg)

## News🔥🔥🔥
- **2024.11.11**: Mono-InternVL is supported by [lmdeploy](https://github.com/InternLM/lmdeploy/pull/2727) 
- **2024.11.3**: Mono-InternVL is supported by [vllm](https://github.com/vllm-project/vllm/pull/9528).

## Introduction

We release Mono-InternVL, a **monolithic** multimodal large language model (MLLM) that integrates visual encoding and textual decoding into a single LLM. In Mono-InternVL, a set of visual experts is embedded into the pre-trained LLM via a mixture-of-experts (MoE) mechanism. By freezing the LLM, Mono-InternVL ensures that visual capabilities are optimized without compromising the pre-trained language knowledge. Based on this structure, an innovative Endogenous Visual Pretraining (EViP) is introduced to realize coarse-to-fine visual learning.



Mono-InternVL achieves superior performance compared to state-of-the-art MLLM Mini-InternVL-2B-1.5 and significantly outperforms other monolithic MLLMs, as shown in the [radar chart](#radar) above. Meanwhile, it achieves better deployment efficiency, with first token latency reduced by up to 67%.



This repository contains the instruction-tuned Mono-InternVL-2B model, which has 1.8B activated parameters (3B in total). It is built upon [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b). For more details, please refer to our [paper](https://arxiv.org/abs/2410.08202).





## Performance
|          Benchmark           | Chameleon-7B | EVE-7B (HD) |    Emu3    | Mini-InternVL-2B-1-5 | Mono-InternVL-2B |
| :--------------------------: | :----------: | :---------: | :--------: | :------------------: | :--------------: |
|             Type             |  Monolithic  | Monolithic  | Monolithic |       Modular        |    Monolithic    |
|      #Activated Params       |      7B      |     7B      |     8B     |         2.2B         |       1.8B       |
|                              |              |             |            |                      |                  |
|            MMVet             |     8.3      |    25.7     |    37.2    |         39.3         |       40.1       |
|      MMMU<sub>val</sub>      |     25.4     |    32.6     |    31.6    |         34.6         |       33.7       |
|      MME<sub>sum</sub>       |     170      |    1628     |     —      |         1902         |       1875       |
|  MMBench-EN<sub>test</sub>   |     31.1     |    52.3     |    58.5    |         70.9         |       65.5       |
| MathVista<sub>testmini</sub> |     22.3     |    34.2     |     —      |         41.1         |       45.7       |
|          SEED-Image          |     30.6     |    64.6     |    68.2    |         69.8         |       67.4       |
|           OCRBench           |      7       |     398     |    687     |         654          |       767        |
|       Hallusion-Bench        |     17.1     |    26.4     |     —      |         37.5         |       34.8       |
|    CCBench<sub>dev</sub>     |     3.5      |    16.3     |     —      |         63.5         |       66.3       |
|   Avg<sub>multimodal</sub>   |     16.1     |    38.9     |     —      |         54.4         |       55.2       |
|                              |              |             |            |                      |                  |
|    TextVQA<sub>val</sub>     |     4.8      |    56.8     |    64.7    |         70.5         |       72.6       |
|     SQA-I<sub>test</sub>     |     47.2     |    64.9     |    89.2    |         84.9         |       93.6       |
|      GQA<sub>test</sub>      |      —       |    62.6     |    60.3    |         61.6         |       59.5       |
|    DocVQA<sub>test</sub>     |     1.5      |    53.0     |    76.3    |         85.0         |       80.0       |
|     AI2D<sub>test</sub>      |     46.0     |    61.0     |    70.0    |         69.8         |       68.6       |
|    ChartQA<sub>test</sub>    |     2.9      |    59.1     |    68.6    |         74.8         |       73.7       |
|    InfoVQA<sub>test</sub>    |     5.0      |    25.0     |    43.8    |         55.4         |       43.0       |
|      Avg<sub>VQA</sub>       |     17.9     |    54.6     |    67.6    |         71.7         |       70.1       |

- Sources of the results include the original papers, our evaluation with [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), and [OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal/?m=REALTIME).
- Average scores are computed by normalizing each metric to a range between 0 and 100.
- Please note that evaluating the same model using different testing toolkits can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.



Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.



## Quick Start

We provide an example code to run Mono-InternVL-2B inference using `transformers`.

> Please use transformers==4.37.2 to ensure the model works normally.


### Inference with Transformers

```python
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


path = 'OpenGVLab/Mono-InternVL-2B'
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)

# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')

# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')

# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')

question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
```

### Inference with LMDeploy

Please install the **latest version** of [LMDeploy](https://github.com/InternLM/lmdeploy) for Mono-InternVL support.

```bash
git clone https://github.com/InternLM/lmdeploy.git
cd lmdeploy
pip install -e .
```

Then run the following code for inference.

```python
from lmdeploy import pipeline
from lmdeploy.vl import load_image

image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('describe this image', image))
print(response.text)
```

## License

This project is released under the MIT license, while InternLM2 is licensed under the Apache-2.0 license.

## Citation

If you find this project useful in your research, please consider citing:

```BibTeX
@article{luo2024mono,
  title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
  author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
  journal={arXiv preprint arXiv:2410.08202},
  year={2024}
}

@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}

@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
```





## 简介

我们发布了Mono-InternVL,这是一种**原生**多模态大语言模型,将视觉编码和文本解码集成到一个单一的大语言模型中。在Mono-InternVL中,一组视觉专家通过专家混合机制嵌入到预训练的语言模型中。通过冻结语言模型的语言部分参数,Mono-InternVL确保了视觉能力的优化,同时不会影响预训练的语言知识。基于这一结构,我们引入了内生视觉预训练(Endogenous Visual Pretraining, EViP),实现了由粗粒度到精粒度的视觉学习。

Mono-InternVL在性能上优于当前最先进的多模态语言模型Mini-InternVL-2B-1.5,并且显著超越了其他原生多模态模型,如上方的[雷达图](#radar)所示。同时,它的部署效率也得到了提升,首个单词的延迟降低了最多达67%。

本仓库包含了经过指令微调的Mono-InternVL-2B模型,它是基于[internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b)搭建的。更多详细信息,请参阅我们的[论文](https://arxiv.org/abs/2410.08202)和[公众号报道](https://mp.weixin.qq.com/s/FmjG0Gp5ow7mm2Vzd9ppPg)。



## 性能测试
|          评测数据集          | Chameleon-7B | EVE-7B (HD) |  Emu3  | Mini-InternVL-2B-1-5 | Mono-InternVL-2B |
| :--------------------------: | :----------: | :---------: | :----: | :------------------: | :--------------: |
|           模型种类           |    原生   |   原生    | 原生 |        非原生        |      原生      |
|           激活参数           |      7B      |     7B      |   8B   |         2.2B         |       1.8B       |
|                              |              |             |        |                      |                  |
|            MMVet             |     8.3      |    25.7     |  37.2  |         39.3         |       40.1       |
|      MMMU<sub>val</sub>      |     25.4     |    32.6     |  31.6  |         34.6         |       33.7       |
|      MME<sub>sum</sub>       |     170      |    1628     |   —    |         1902         |       1875       |
|  MMBench-EN<sub>test</sub>   |     31.1     |    52.3     |  58.5  |         70.9         |       65.5       |
| MathVista<sub>testmini</sub> |     22.3     |    34.2     |   —    |         41.1         |       45.7       |
|          SEED-Image          |     30.6     |    64.6     |  68.2  |         69.8         |       67.4       |
|           OCRBench           |      7       |     398     |  687   |         654          |       767        |
|       Hallusion-Bench        |     17.1     |    26.4     |   —    |         37.5         |       34.8       |
|    CCBench<sub>dev</sub>     |     3.5      |    16.3     |   —    |         63.5         |       66.3       |
|   Avg<sub>multimodal</sub>   |     16.1     |    38.9     |   —    |         54.4         |       55.2       |
|                              |              |             |        |                      |                  |
|    TextVQA<sub>val</sub>     |     4.8      |    56.8     |  64.7  |         70.5         |       72.6       |
|     SQA-I<sub>test</sub>     |     47.2     |    64.9     |  89.2  |         84.9         |       93.6       |
|      GQA<sub>test</sub>      |      —       |    62.6     |  60.3  |         61.6         |       59.5       |
|    DocVQA<sub>test</sub>     |     1.5      |    53.0     |  76.3  |         85.0         |       80.0       |
|     AI2D<sub>test</sub>      |     46.0     |    61.0     |  70.0  |         69.8         |       68.6       |
|    ChartQA<sub>test</sub>    |     2.9      |    59.1     |  68.6  |         74.8         |       73.7       |
|    InfoVQA<sub>test</sub>    |     5.0      |    25.0     |  43.8  |         55.4         |       43.0       |
|      Avg<sub>VQA</sub>       |     17.9     |    54.6     |  67.6  |         71.7         |       70.1       |

- 以上结果的来源包括相应的原始论文、我们基于[VLMEvalKit](https://github.com/open-compass/VLMEvalKit)的评测,以及[OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal/?m=REALTIME)。
- 平均分数Avg通过将每个指标归一化到0至100之间来计算。
- 请注意,使用不同的测试工具包评估同一模型可能会导致评测结果的细微差异,这是正常的。代码版本的更新、环境和硬件的变化也可能导致结果的微小差异。



## 快速上手

我们提供了一个示例代码,用于使用 `transformers` 进行 Mono-InternVL-2B 推理。

> 请使用 transformers==4.37.2 以确保模型正常运行。

示例代码请[点击这里](#quick-start)。


## 开源许可证

该项目采用 MIT 许可证发布,而 InternLM2 则采用 Apache-2.0 许可证。

## 引用

如果您发现此项目对您的研究有用,可以考虑引用我们的论文:

```BibTeX
@article{luo2024mono,
  title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
  author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
  journal={arXiv preprint arXiv:2410.08202},
  year={2024}
}

@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}

@inproceedings{chen2024internvl,
  title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={24185--24198},
  year={2024}
}
  
```