File size: 63,569 Bytes
81d64a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union
import torch.distributed as dist
import torch.utils.checkpoint
import transformers
from internvl.conversation import get_conv_template
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
from internvl.model.phi3.modeling_phi3 import Phi3ForCausalLM
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from .configuration_internvl_chat import InternVLChatConfig
from .modeling_intern_vit import InternVisionModel
logger = logging.get_logger(__name__)
from transformers import AutoTokenizer
import json
tokenizer_path="/mnt/petrelfs/share_data/chenziyi/InternVL2-2B"
global_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, add_eos_token=False, trust_remote_code=True, use_fast=False)
import random
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
def extract_local(value, rank, world_size, dim=1):
value_chunks = value.chunk(2 * world_size, dim=dim)
local_value = torch.cat(
[value_chunks[rank], value_chunks[2 * world_size - rank - 1]], dim=dim
)
return local_value.to(value.device)
def extract_local2(value, rank, world_size, dim=1):
dimension_size = value.shape[dim]
sub_seq_length = dimension_size // world_size
sub_seq_start = rank * sub_seq_length
sub_seq_end = (rank + 1) * sub_seq_length
local_value = value[:, sub_seq_start:sub_seq_end]
return local_value.to(value.device)
class GatherLayer(torch.autograd.Function):
"""Gather tensors from all process, supporting backward propagation."""
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
output = [torch.zeros_like(input) for _ in range(dist.get_world_size(local_group))]
dist.all_gather(output, input, group=local_group)
return torch.stack(output, 0)
@staticmethod
def backward(ctx, grads):
(input,) = ctx.saved_tensors
dist.all_reduce(grads, group=local_group)
grad_out = torch.zeros_like(input)
grad_out[:] = grads[dist.get_rank(local_group)]
return grad_out
class InternVLChatModel(PreTrainedModel):
config_class = InternVLChatConfig
main_input_name = 'pixel_values'
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
'Phi3DecoderLayer', 'Qwen2DecoderLayer']
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
# batch_size: 批处理大小
# patch_size: 图片分块大小
# downsample_ratio: 缩放比例,将高分辨率图像转换为低分辨率图像
# self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.compress_seq = config.compress_seq
self.attn_type = config.attn_type
self.posid_type = config.posid_type
if self.posid_type is None:
self.posid_type='default'
assert self.posid_type in ['default','None', 'qkvLearnable', 'qkLearnable', '1dROPE', '2dROPE']
self.group_list = config.group_list
self.chunk_num = config.chunk_num
self.interaction = config.interaction
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
config.llm_config.posid_type = self.posid_type
config.llm_config.rope_pos_id_version=config.rope_pos_id_version
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = InternVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
self.language_model = LlamaForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
self.language_model = InternLM2ForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
self.language_model = Phi3ForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
self.language_model = Qwen2ForCausalLM(config.llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
if self.posid_type in ['qkvLearnable']:
self.local_posid = nn.Embedding(self.num_image_token,llm_hidden_size)
self.img_context_token_id = None
self.conv_template = get_conv_template(self.template)
self.system_message = self.conv_template.system_message
self.num_samples = 0
if config.use_backbone_lora:
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
if config.use_llm_lora:
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
def init_embed(self):
if hasattr(self,'local_posid'):
nn.init.normal_(self.local_posid.weight, mean=0.0, std=0.02)
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
)
self.vision_model = get_peft_model(self.vision_model, lora_config)
self.vision_model.print_trainable_parameters()
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
lora_config = LoraConfig(
r=r,
target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
task_type='CAUSAL_LM'
)
self.language_model = get_peft_model(self.language_model, lora_config)
self.language_model.enable_input_require_grads()
self.language_model.print_trainable_parameters()
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
statistics: Optional[torch.LongTensor] = None,
loss_weight: Optional[List] = None,
loss_reduction_all_gather: Optional[bool] = False,
origin_cu_seq_lens: Optional[torch.Tensor] = None,
rope_pos_id: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
# import ipdb
# ipdb.set_trace()
if isinstance(position_ids,list):
position_ids=torch.tensor(position_ids).to(input_ids.device)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# print("Printing decoded input ids")
# decoded_texts = [global_tokenizer.decode(ids, skip_special_tokens=True) for ids in input_ids]
# for i, text in enumerate(decoded_texts):
# print(f"Sample {i+1}: {text}")
global local_group
if self.group_list is not None:
for group_idx,group in enumerate(self.group_list):
if type(group)==torch.distributed.distributed_c10d.ProcessGroup:
# assert type(group)==torch.distributed.distributed_c10d.ProcessGroup
break # print("Printing decoded input ids")
local_group=group
else:
group=None
local_group=None
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
if self.attn_type:
if self.attn_type=='ring':
group_size = dist.get_world_size(group)
img_num_dim = 0
pad_num=0
if pixel_values.shape[img_num_dim] > group_size:
if pixel_values.shape[img_num_dim] % group_size!=0:
pad_num = group_size - pixel_values.shape[img_num_dim] % group_size
if pad_num < group_size: # 仅在需要填充时进行
# 创建填充的张量,与 pixel_values 的形状匹配
pad_shape = list(pixel_values.shape)
pad_shape[img_num_dim] = pad_num # 在目标维度上设置填充值
pad_pixel = torch.zeros(pad_shape, dtype=pixel_values.dtype, device=pixel_values.device)
# 在指定维度上拼接原始张量和填充张量
pixel_values = torch.cat([pixel_values, pad_pixel], dim=img_num_dim)
chunked_pixel=torch.chunk(pixel_values, group_size, dim=img_num_dim)
local_pixel=chunked_pixel[dist.get_rank(group)]
local_vit_embeds=self.extract_feature(local_pixel)
vit_embeds=GatherLayer.apply(local_vit_embeds)
vit_embeds=vit_embeds.view(-1,vit_embeds.shape[-2],vit_embeds.shape[-1])
if pad_num>0:
vit_embeds=vit_embeds[:-pad_num]
else:
vit_embeds = self.extract_feature(pixel_values)
else:
vit_embeds = self.extract_feature(pixel_values)
else:
vit_embeds = self.extract_feature(pixel_values)
if self.posid_type=='qkvLearnable':
# added_embeds = self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
# vit_embeds = vit_embeds + added_embeds
vit_embeds=vit_embeds+self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
# print("Printing pixiel shape", pixel_values.shape)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
if statistics is not None:
num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
self.num_samples += num_samples
print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
ignore_flag = False
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
# ignore_flag = True
ignore_flag = False
input_embeds = input_embeds.reshape(B, N, C)
if self.attn_type:
if self.attn_type=='ulysses':
input_embeds=extract_local2(input_embeds,dist.get_rank(group),dist.get_world_size(group))
position_ids=extract_local2(position_ids,dist.get_rank(group),dist.get_world_size(group))
labels=extract_local2(labels,dist.get_rank(group),dist.get_world_size(group))
loss_weight=extract_local2(torch.tensor(loss_weight),dist.get_rank(group),dist.get_world_size(group))
loss_weight=list(loss_weight.numpy())
attention_mask=attention_mask//dist.get_world_size(group)
elif self.attn_type=='ring':
input_embeds=extract_local(input_embeds,dist.get_rank(group),dist.get_world_size(group))
position_ids=extract_local(position_ids,dist.get_rank(group),dist.get_world_size(group))
labels=extract_local(labels,dist.get_rank(group),dist.get_world_size(group))
if loss_weight:
loss_weight=extract_local(torch.tensor(loss_weight),dist.get_rank(group),dist.get_world_size(group))
loss_weight=list(loss_weight.numpy())
attention_mask=attention_mask//dist.get_world_size(group)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
compress_seq=self.compress_seq,
group_list=self.group_list,
chunk_num=self.chunk_num,
origin_cu_seq_lens=origin_cu_seq_lens,
interaction=self.interaction,
selected=selected
)
logits = outputs.logits
loss = None
if labels is not None and loss_weight is not None:
# decoded_labels = global_tokenizer.decode(labels[0][labels[0]!=-100], skip_special_tokens=True)
loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
shift_weights = loss_weight[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(reduction='none')
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
shift_weights = shift_weights.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
shift_weights = shift_weights.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
shift_weights_sum = shift_weights.sum()
if loss_reduction_all_gather:
dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)
loss = loss * shift_weights
loss = loss.sum() / shift_weights_sum
if ignore_flag:
loss = loss * 0.0
elif labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if ignore_flag:
loss = loss * 0.0
params=dict(self.named_parameters())
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
# self.update_log(log_dict)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
# 选择视觉模型特定层的输出作为图片特征
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
# [batch_size, num_patches, vit_hidden_size]
# 去除第一个标记
vit_embeds = vit_embeds[:, 1:, :]
# [batch_size, num_patches, vit_hidden_size] -> [batch_size, h, w, vit_hidden_size]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
# 像素混洗,降低分辨率,减少 num_patches
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
# 线性层,vit_hidden_size -> llm_hidden_size
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
if history is not None or return_history:
print('Now multi-turn chat is not supported in batch_chat.')
raise NotImplementedError
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
template = get_conv_template(self.template)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
queries.append(query)
# tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=False)
input_ids = model_inputs['input_ids'].cuda()
attention_mask = model_inputs['attention_mask'].cuda()
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep)[0].strip() for response in responses]
return responses
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
verbose=False,**kwargs):
if history is None and pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
# num_patches_list 用法:
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
# 设置图片上下文的 token id
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
# 获取 Chat 模板
template = get_conv_template(self.template)
# 设置系统消息
template.system_message = self.system_message
# 设置分隔符 End Of Sentence
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
# 将历史对话添加到模板中
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
# 生成查询
query = template.get_prompt()
# verbose: 是否打印调试信息
if verbose and pixel_values is not None:
# pixel_values 形状: [batch_size, channels, height, width]
# 其中 batch_size 即图片数量
# 打印批处理大小信息
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
# 将图片 token 插入到查询中,图片用占位符 IMG_CONTEXT_TOKEN 代替
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
# 用分词器将查询转换为模型输入
model_inputs = tokenizer(query, return_tensors='pt')
# 文本对应的 token id,转换为 cuda 张量
# ID 长度就是 Token 长度,形状为 [1, sequence_length]
input_ids = model_inputs['input_ids'].cuda()
# print(f'Token length: {input_ids.shape[1]}')
# 实际输入掩码为 1,填充部分掩码为 0
attention_mask = model_inputs['attention_mask'].cuda()
# 分隔符 End Of Sentence
generation_config['eos_token_id'] = eos_token_id
if 'rope_pos_id_version' in kwargs:
self.language_model.rope_pos_id_version=kwargs['rope_pos_id_version']
pos_ids=[]
ret={'input_ids':input_ids,'attention_mask':attention_mask}
for i in range(input_ids.shape[0]):
# cur_position_ids = ret['attention_mask'][i].long().cumsum(-1) - 1
# cur_position_ids.masked_fill_(ret['attention_mask'][i] == 0, 1)
if kwargs['rope_pos_id_version'] == 'default':
cur_dtype = torch.long
# bf16 -> long 会产生截断
else:
cur_dtype = torch.float32
if 'rope_pos_id_stride' in kwargs:
rope_pos_id_stride = kwargs['rope_pos_id_stride']
else:
rope_pos_id_stride = None
pos_ids.append(torch.tensor(get_rope_pos_id(ret, num_tiles=kwargs['num_tiles'][i], dtype=cur_dtype,
rope_pos_id_version=kwargs['rope_pos_id_version'],
position_id=torch.arange(0,input_ids.shape[1]),
# position_id=cur_position_ids,
boxes=kwargs['all_boxes'][i],
orig_size=None,
images=kwargs['image_list'][i],
IMG_START_TOKEN=IMG_START_TOKEN,
IMG_END_TOKEN=IMG_END_TOKEN, rope_pos_id_stride=rope_pos_id_stride)).cuda())
pos_ids=torch.stack(pos_ids)
if self.attn_type=='ulysses' or self.attn_type=='ring':
if input_ids.shape[1]%(2*dist.get_world_size())!=0:
num_padding = 2*dist.get_world_size()-input_ids.shape[1]%(2*dist.get_world_size())
# 创建需要的 padding,input_ids 和 labels 填充值为 -100
padding_shape = (input_ids.shape[0], num_padding)
input_padding = torch.full(padding_shape, 1, dtype=input_ids.dtype, device=input_ids.device)
attn_mask_padding = torch.full(padding_shape, 1, dtype=attention_mask.dtype, device=attention_mask.device)
# 对 input_ids 和 labels 进行 padding
input_ids = torch.cat([input_ids, input_padding], dim=1)
attention_mask=torch.cat([attention_mask,attn_mask_padding],dim=1)
# position_ids 添加正确的递增填充
max_pos_id = pos_ids.max() + 1 # 找到当前最大 position_id
pos_padding = torch.arange(max_pos_id, max_pos_id + num_padding, device=input_ids.device)
pos_padding = pos_padding.unsqueeze(0).expand(input_ids.shape[0], -1)
pos_ids = torch.cat([pos_ids, pos_padding], dim=1)
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=pos_ids,
**generation_config,
)
else:
self.language_model.rope_pos_id_version='default'
if self.attn_type=='ulysses' or self.attn_type=='ring':
if input_ids.shape[1]%(2*dist.get_world_size())!=0:
num_padding = 2*dist.get_world_size()-input_ids.shape[1]%(2*dist.get_world_size())
# 创建需要的 padding,input_ids 和 labels 填充值为 -100
padding_shape = (input_ids.shape[0], num_padding)
input_padding = torch.full(padding_shape, 1, dtype=input_ids.dtype, device=input_ids.device)
attn_mask_padding = torch.full(padding_shape, 0, dtype=attention_mask.dtype, device=attention_mask.device)
# 对 input_ids 和 labels 进行 padding
input_ids = torch.cat([input_ids, input_padding], dim=1)
attention_mask=torch.cat([attention_mask,attn_mask_padding],dim=1)
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config,
)
# 解码生成的输出,跳过特殊 token
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
# 根据分隔符分段
response = response.split(template.sep)[0].strip()
# 将结果写入历史
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
# 提取图片 embedding
# [batch_size, channels, height, width] -> [batch_size, 每张图片的 patch 数, embedding_dim]
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values)
if self.posid_type=='qkvLearnable':
added_embeds = self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
vit_embeds = vit_embeds + added_embeds
# vit_embeds=vit_embeds+self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
# 通过嵌入层将 token id 转化为嵌入向量
# 其中图片用占位符 IMG_CONTEXT_TOKEN 的 embedding 代替
input_embeds = self.language_model.get_input_embeddings()(input_ids)
# [1, sequence_length, embedding_dim] -> [sequence_length, embedding_dim]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
# [1, sequence_length] -> [sequence_length]
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
# 图片 embedding: [总 Patch 数, embedding_dim]
# 每个 patch 与一个占位符对应,对应一列 embedding
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
# 通过嵌入层将 token id 转化为嵌入向量
# 例如 one hot 编码、Word2Vec、GloVe、FastText等
# 嵌入层是一张查找表
# [1, sequence_length] -> [1, sequence_length, embedding_dim]
input_embeds = self.language_model.get_input_embeddings()(input_ids)
# 找到图片占位符的位置
if 'position_ids' in generate_kwargs:
pos_id=generate_kwargs['position_ids']
if self.attn_type:
if self.attn_type=='ulysses':
input_embeds=extract_local2(input_embeds,dist.get_rank(),dist.get_world_size())
attention_mask=extract_local2(attention_mask,dist.get_rank(),dist.get_world_size())
pos_id=extract_local2(pos_id,dist.get_rank(),dist.get_world_size())
elif self.attn_type=='ring':
former_shape = input_embeds.shape
input_embeds=extract_local(input_embeds,dist.get_rank(),dist.get_world_size())
attention_mask=extract_local(attention_mask,dist.get_rank(),dist.get_world_size())
pos_id=extract_local(pos_id,dist.get_rank(),dist.get_world_size())
generate_kwargs['position_ids']=pos_id
else:
if self.attn_type:
if self.attn_type=='ulysses':
input_embeds=extract_local2(input_embeds,dist.get_rank(),dist.get_world_size())
attention_mask=extract_local2(attention_mask,dist.get_rank(),dist.get_world_size())
elif self.attn_type=='ring':
former_shape = input_embeds.shape
input_embeds=extract_local(input_embeds,dist.get_rank(),dist.get_world_size())
attention_mask=extract_local(attention_mask,dist.get_rank(),dist.get_world_size())
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=True,
**generate_kwargs,
)
return outputs
def update_log(self, new_log_dict):
if not hasattr(self, 'log_dict'):
self.log_dict = {}
for key, value in new_log_dict.items():
if 'loss' in key:
if key not in self.log_dict:
self.log_dict[key] = value
else:
self.log_dict[key] += value
else:
# just copy it
self.log_dict[key] = value
def get_rope_pos_id(ret, num_tiles, dtype, rope_pos_id_version='default', position_id=None,boxes=None, orig_size=None,images=None,IMG_START_TOKEN='<img>',IMG_END_TOKEN='</img>',rope_pos_id_stride=None):
image_start_token_id = global_tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
image_end_token_id = global_tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
num_image_token=256
rope_pos_id_list = []
input_ids_0 = ret['input_ids'][0]
attention_mask_0 = ret['attention_mask'][0]
image_start_token_id_idxs = torch.where(input_ids_0 == image_start_token_id)[0]
image_end_token_id_idxs = torch.where(input_ids_0 == image_end_token_id)[0]
last_record_pos_id = -1
start_index = 0
for i in range(len(image_start_token_id_idxs)):
# 根据序列中的 IMG_START_TOKEN 出现的位置,锁定需要处理的图像 id 序列
# 注:这里的 IMG_START_TOKEN 和 IMG_END_TOKEN 应当与文本的处理方式相同
box = boxes[i]
image = images[i]
rope_pos_id_pre = attention_mask_0[start_index:image_start_token_id_idxs[i] + 1].long().cumsum(-1) - 1 + (last_record_pos_id + 1) # 从处理好的序列的最后一个 global id 开始 count
rope_pos_id_pre.masked_fill_(attention_mask_0[start_index:image_start_token_id_idxs[i] + 1] == 0, 1)
rope_pos_id_list.append(rope_pos_id_pre)
last_record_pos_id = rope_pos_id_pre[-1].long()
num_tile = num_tiles[i]
num_sub_imgs = num_tile - 1
is_last = (i == len(image_start_token_id_idxs) - 1)
if rope_pos_id_version == 'v0':
# 子图为小数,且不管多少个子图,其分配的总 global id 跨度为1;缩略图单独分配完整的,跨度为 1的 global id. Example:
# start_id = 100; 100 - 101 (分给 4 * 256),子图数目为4; 101 - 102 (分给 256) 缩略图
if num_sub_imgs > 0:
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype) # 小数数值的 tensor 作为变换的数据取值
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1,
num_image_token + 1)[1:].to(dtype=dtype) # 缩略图
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = (last_record_pos_id + 1).long()
# 验证是否能够恢复为等差数列
if num_tile > 1:
gt_pos_id = torch.linspace(last_record_pos_id - 2, last_record_pos_id - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)
# self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, dtype, is_last)
elif rope_pos_id_version == 'v1':
# 子图为小数,若有 N 个子图,其分配的总 global id 跨度为 N;缩略图单独分配完整的,跨度为 1的 global id. Example:
# start_id = 100; 100 - 104 (分给 4 * 256),子图数目为4; 104 - 105 (分给 256) 缩略图
if num_sub_imgs > 0:
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_tile - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype) # 小数数值的 tensor 作为变换的数据取值
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
# rearange_split_img_id_idxs_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (
num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
# rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
# thumbnail_id_idxs = torch.linspace(last_record_pos_id + 1, last_record_pos_id + 2, num_image_token + 1)[1:].to(dtype=dtype) # 缩略图
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1, num_image_token + 1)[1:].to(dtype=dtype) # 缩略图
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = (last_record_pos_id + 1).long()
# 验证是否能够恢复为等差数列
if num_tile > 1:
gt_pos_id = torch.linspace(last_record_pos_id - 1 - (num_tile - 1), last_record_pos_id - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)
# self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, dtype)
elif rope_pos_id_version == 'v2':
# 子图处理方式同文本(N 个子图分配 N * 256 个 global id);一个缩略图分配 256 * N 个的 global id.
# 子图处理同 v0, v1,也对 global id 根据空间关系做 arrange
if num_sub_imgs > 0:
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_sub_imgs * num_image_token, num_sub_imgs * num_image_token + 1)[1:].long() # long 数值的 tensor 作为变换的数据取值
last_id_for_split_img = last_record_pos_id + num_sub_imgs * num_image_token
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
# rearange_split_img_id_idxs_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (
num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
# rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].long() # 缩略图,和 default 处理一致
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = thumbnail_id_idxs[-1].long()
# 验证是否能够恢复为等差数列
if num_tile > 1:
gt_pos_id = torch.linspace(last_id_for_split_img - num_image_token * num_sub_imgs,
last_id_for_split_img,
num_sub_imgs * num_image_token + 1)[1:].long()
# self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, gt_pos_id.dtype)
elif rope_pos_id_version == 'v3':
# N 个子图共用跨度为 256 的 global id;一个缩略图正常分配 256 个 global id
if num_sub_imgs > 0:
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype) # 小数数值的 tensor 作为变换的数据取值
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
# rearange_split_img_id_idxs_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (
num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
# rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].to(dtype=dtype) # 缩略图,和 default 处理一致
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = thumbnail_id_idxs[-1].to(dtype=dtype)
# 验证是否能够恢复为等差数列
if num_tile > 1:
gt_pos_id = torch.linspace(last_record_pos_id - num_image_token - num_image_token,
last_record_pos_id - num_image_token,
num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype)
# self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, gt_pos_id.dtype)
elif rope_pos_id_version == 'v4':
# stride 是可变长的
assert rope_pos_id_stride is not None, 'when rope_pos_id_version == v4, rope_pos_id_stride should not be None'
if num_sub_imgs > 0:
num_sub_image_tokens = num_image_token * num_sub_imgs
split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + rope_pos_id_stride, num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype) # 小数数值的 tensor 作为变换的数据取值
assert len(split_img_id_idxs) == num_sub_image_tokens
origin_split_img_id_idxs = split_img_id_idxs
############################## 进行位置变换 ##############################
# 先计算第一个子图对应 index
rearange_idx_list = []
rearange_idx_list_list = []
base_index_list = []
# rearange_split_img_id_idxs_list = []
num_img_token_in_length = int(num_image_token ** 0.5)
num_patch_width = int(box[-1][2] // box[0][2])
num_patch_height = int(box[-1][3] // box[0][2])
assert num_patch_width * num_patch_height == len(box)
num_total_patch_width_token = num_patch_width * num_img_token_in_length
num_total_patch_height_token = num_patch_height * num_img_token_in_length
assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)
for k in range(num_image_token):
map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
k % num_img_token_in_length)
base_index_list.append(map_idx)
# 计算其他子图对应第一个子图的 offset
for k in range(num_sub_imgs):
patch_row = k // num_patch_width
patch_col = k % num_patch_width
offset = patch_row * (num_image_token * num_patch_width) + patch_col * num_img_token_in_length
# print(f'{k=}, {offset=}')
dst_index_list = [base_index + offset for base_index in base_index_list]
rearange_idx_list.extend(dst_index_list)
rearange_idx_list_list.append(dst_index_list)
# rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])
############################## plot 验证 ##############################
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
# img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
# zip(image[:-1], box, rearange_idx_list_list)]
# self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)
############################## rearrange ##############################
split_img_id_idxs = split_img_id_idxs[rearange_idx_list]
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = origin_split_img_id_idxs[-1].long()
else:
thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].to(dtype=dtype) # 缩略图,和 default 处理一致
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = thumbnail_id_idxs[-1].to(dtype=dtype)
elif rope_pos_id_version == 'v5':
assert rope_pos_id_stride is not None, 'when rope_pos_id_version == v5, self.rope_pos_id_stride should not be None'
small_stride = rope_pos_id_stride / num_image_token
# split_img_id_idxs = torch.arange(last_record_pos_id, last_record_pos_id + small_stride * (num_image_token * num_tile + 1), small_stride)[1:].to(dtype=dtype)
split_img_id_idxs = torch.linspace(last_record_pos_id,last_record_pos_id+small_stride*(num_image_token * num_tile ),(num_image_token * num_tile + 1))[1:].to(dtype=dtype)
rope_pos_id_list.append(split_img_id_idxs)
last_record_pos_id = torch.ceil(split_img_id_idxs[-1]).long()
elif rope_pos_id_version == 'v6':
random_from=[1,2,4,8,16,32,64,128,256]
rope_pos_id_stride=random.choice(random_from)
small_stride = rope_pos_id_stride / num_image_token
# split_img_id_idxs = torch.arange(last_record_pos_id, last_record_pos_id + small_stride * (num_image_token * num_tile + 1), small_stride)[1:].to(dtype=dtype)
split_img_id_idxs = torch.linspace(last_record_pos_id,last_record_pos_id+small_stride*(num_image_token * num_tile ),(num_image_token * num_tile + 1))[1:].to(dtype=dtype)
rope_pos_id_list.append(split_img_id_idxs)
last_record_pos_id = torch.ceil(split_img_id_idxs[-1]).long()
elif rope_pos_id_version == 'default':
# baseline
# 无特殊处理的做法
split_img_id_idxs = torch.linspace(last_record_pos_id,
last_record_pos_id + (num_tile - 1) * num_image_token,
(num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype) # 子图
rope_pos_id_list.append(split_img_id_idxs)
thumbnail_id_idxs = torch.linspace(last_record_pos_id + (num_tile - 1) * num_image_token,
last_record_pos_id + num_tile * num_image_token,
num_image_token + 1)[1:].to(dtype=dtype) # 缩略图
rope_pos_id_list.append(thumbnail_id_idxs)
last_record_pos_id = (last_record_pos_id + num_tile * num_image_token).long()
else:
raise NotImplementedError(f'not implement for {rope_pos_id_version}')
try:
start_index = image_start_token_id_idxs[i] + num_tile * num_image_token + 1
assert input_ids_0[start_index] == image_end_token_id # 下一次迭代的开头应该是 IMG_END_TOKEN
assert start_index == image_end_token_id_idxs[i] # 下一次迭代的开头应该是 IMG_END_TOKEN
except:
import ipdb
ipdb.set_trace()
if image_end_token_id_idxs[-1] != input_ids_0.shape[0] - 1:
# 末尾还有待处理的非图像 id 的情况
assert image_end_token_id_idxs[-1] == start_index # 应当从最后一个 IMG_END_TOKEN 开始
rope_pos_id_pre = attention_mask_0[start_index:].long().cumsum(-1) - 1 + (last_record_pos_id + 1)
rope_pos_id_pre.masked_fill_(attention_mask_0[start_index:] == 0, 1)
rope_pos_id_list.append(rope_pos_id_pre)
rope_pos_id_list=[_.to('cpu') for _ in rope_pos_id_list]
rope_pos_id = torch.cat(rope_pos_id_list).to(dtype=dtype)
if rope_pos_id_version == 'default':
rope_pos_id = rope_pos_id.long() # 不做特殊处理的 rope_pos_id 应当等于 position_ids
assert torch.equal(rope_pos_id, position_id.to(rope_pos_id.device)), (rope_pos_id, position_id.to(rope_pos_id.device))
assert torch.allclose(rope_pos_id, position_id.to(rope_pos_id.device), atol=1e-32)
assert rope_pos_id.shape == input_ids_0.shape
return list(rope_pos_id.numpy())
|