Transformers
Safetensors
English
V2PE
Inference Endpoints
File size: 63,569 Bytes
81d64a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union

import torch.distributed as dist
import torch.utils.checkpoint
import transformers
from internvl.conversation import get_conv_template
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
from internvl.model.phi3.modeling_phi3 import Phi3ForCausalLM
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
                          LlamaTokenizer, Qwen2ForCausalLM)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging

from .configuration_internvl_chat import InternVLChatConfig
from .modeling_intern_vit import InternVisionModel

logger = logging.get_logger(__name__)
from transformers import AutoTokenizer
import json
tokenizer_path="/mnt/petrelfs/share_data/chenziyi/InternVL2-2B"
global_tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_path, add_eos_token=False, trust_remote_code=True, use_fast=False)
import random


def version_cmp(v1, v2, op='eq'):
    import operator

    from packaging import version
    op_func = getattr(operator, op)
    return op_func(version.parse(v1), version.parse(v2))
def extract_local(value, rank, world_size, dim=1):
    value_chunks = value.chunk(2 * world_size, dim=dim)
    local_value = torch.cat(
        [value_chunks[rank], value_chunks[2 * world_size - rank - 1]], dim=dim
    )
    return local_value.to(value.device)
def extract_local2(value, rank, world_size,  dim=1):
    dimension_size = value.shape[dim]
    sub_seq_length = dimension_size // world_size

    sub_seq_start = rank * sub_seq_length
    sub_seq_end = (rank + 1) * sub_seq_length
    local_value = value[:, sub_seq_start:sub_seq_end]

    return local_value.to(value.device)
class GatherLayer(torch.autograd.Function):
    """Gather tensors from all process, supporting backward propagation."""

    @staticmethod
    def forward(ctx, input):
        ctx.save_for_backward(input)
        output = [torch.zeros_like(input) for _ in range(dist.get_world_size(local_group))]
        dist.all_gather(output, input, group=local_group)
        return torch.stack(output, 0)

    @staticmethod
    def backward(ctx, grads):
        (input,) = ctx.saved_tensors
        dist.all_reduce(grads, group=local_group)
        grad_out = torch.zeros_like(input)
        grad_out[:] = grads[dist.get_rank(local_group)]
        return grad_out
class InternVLChatModel(PreTrainedModel):
    config_class = InternVLChatConfig
    main_input_name = 'pixel_values'
    _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
                         'Phi3DecoderLayer', 'Qwen2DecoderLayer']

    def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
        super().__init__(config)

        assert version_cmp(transformers.__version__, '4.37.0', 'ge')
        image_size = config.force_image_size or config.vision_config.image_size
        patch_size = config.vision_config.patch_size
        self.patch_size = patch_size
        self.select_layer = config.select_layer
        self.template = config.template
        
        # batch_size: 批处理大小
        # patch_size: 图片分块大小
        # downsample_ratio: 缩放比例,将高分辨率图像转换为低分辨率图像
        # self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.downsample_ratio = config.downsample_ratio
        self.ps_version = config.ps_version
        self.compress_seq = config.compress_seq
        self.attn_type = config.attn_type
        self.posid_type = config.posid_type
        if self.posid_type is None:
            self.posid_type='default'
        assert self.posid_type in ['default','None', 'qkvLearnable', 'qkLearnable', '1dROPE', '2dROPE']
        self.group_list = config.group_list
        self.chunk_num = config.chunk_num
        self.interaction = config.interaction


        logger.info(f'num_image_token: {self.num_image_token}')
        logger.info(f'ps_version: {self.ps_version}')
        config.llm_config.posid_type = self.posid_type
        config.llm_config.rope_pos_id_version=config.rope_pos_id_version
        if vision_model is not None:
            self.vision_model = vision_model
        else:
            self.vision_model = InternVisionModel(config.vision_config)
        if language_model is not None:
            self.language_model = language_model
        else:
            if config.llm_config.architectures[0] == 'LlamaForCausalLM':
                self.language_model = LlamaForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
                self.language_model = InternLM2ForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
                self.language_model = Phi3ForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
                self.language_model = Qwen2ForCausalLM(config.llm_config)
            else:
                raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')

        vit_hidden_size = config.vision_config.hidden_size
        llm_hidden_size = config.llm_config.hidden_size

        self.mlp1 = nn.Sequential(
            nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
            nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
            nn.GELU(),
            nn.Linear(llm_hidden_size, llm_hidden_size)
        )
        
        if self.posid_type in ['qkvLearnable']:
            self.local_posid = nn.Embedding(self.num_image_token,llm_hidden_size)
            
        self.img_context_token_id = None
        self.conv_template = get_conv_template(self.template)
        self.system_message = self.conv_template.system_message
        self.num_samples = 0

        if config.use_backbone_lora:
            self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)

        if config.use_llm_lora:
            self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
    def init_embed(self):
        if hasattr(self,'local_posid'):
            nn.init.normal_(self.local_posid.weight, mean=0.0, std=0.02)
    def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )
        self.vision_model = get_peft_model(self.vision_model, lora_config)
        self.vision_model.print_trainable_parameters()

    def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
                            'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            task_type='CAUSAL_LM'
        )
        self.language_model = get_peft_model(self.language_model, lora_config)
        self.language_model.enable_input_require_grads()
        self.language_model.print_trainable_parameters()
    
    def forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            statistics: Optional[torch.LongTensor] = None,
            loss_weight: Optional[List] = None,
            loss_reduction_all_gather: Optional[bool] = False,
            origin_cu_seq_lens: Optional[torch.Tensor] = None,
            rope_pos_id: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        # import ipdb
        # ipdb.set_trace()
        if isinstance(position_ids,list):
            position_ids=torch.tensor(position_ids).to(input_ids.device)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        # print("Printing decoded input ids")
        # decoded_texts = [global_tokenizer.decode(ids, skip_special_tokens=True) for ids in input_ids]
        # for i, text in enumerate(decoded_texts):
        #     print(f"Sample {i+1}: {text}")
        global local_group
        if self.group_list is not None:
            for group_idx,group in enumerate(self.group_list):
                if type(group)==torch.distributed.distributed_c10d.ProcessGroup:
                    # assert type(group)==torch.distributed.distributed_c10d.ProcessGroup
                    break        # print("Printing decoded input ids")
            local_group=group
        else:
            group=None
            local_group=None
        image_flags = image_flags.squeeze(-1)
        input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
        if self.attn_type:
            if self.attn_type=='ring':
                group_size = dist.get_world_size(group)
                img_num_dim = 0
                pad_num=0
                if pixel_values.shape[img_num_dim] > group_size:
                    if pixel_values.shape[img_num_dim] % group_size!=0:
                        pad_num = group_size - pixel_values.shape[img_num_dim] % group_size
                        if pad_num < group_size:  # 仅在需要填充时进行
                            # 创建填充的张量,与 pixel_values 的形状匹配
                            pad_shape = list(pixel_values.shape)
                            pad_shape[img_num_dim] = pad_num  # 在目标维度上设置填充值
                            pad_pixel = torch.zeros(pad_shape, dtype=pixel_values.dtype, device=pixel_values.device)

                            # 在指定维度上拼接原始张量和填充张量
                            pixel_values = torch.cat([pixel_values, pad_pixel], dim=img_num_dim)

                    chunked_pixel=torch.chunk(pixel_values, group_size, dim=img_num_dim)
                    local_pixel=chunked_pixel[dist.get_rank(group)]
                    local_vit_embeds=self.extract_feature(local_pixel)
                    vit_embeds=GatherLayer.apply(local_vit_embeds)
                    vit_embeds=vit_embeds.view(-1,vit_embeds.shape[-2],vit_embeds.shape[-1])
                    if pad_num>0:
                        vit_embeds=vit_embeds[:-pad_num]
                else:
                    vit_embeds = self.extract_feature(pixel_values)
            else:
                vit_embeds = self.extract_feature(pixel_values)
        else:
            vit_embeds = self.extract_feature(pixel_values)
        
        if self.posid_type=='qkvLearnable':
            # added_embeds = self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
            # vit_embeds = vit_embeds + added_embeds
            vit_embeds=vit_embeds+self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))


        vit_embeds = vit_embeds[image_flags == 1]
        vit_batch_size = pixel_values.shape[0]
        # print("Printing pixiel shape", pixel_values.shape)
        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
            print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
            if statistics is not None:
                num_samples, num_padding_tokens, num_padding_images = statistics.tolist()
                self.num_samples += num_samples
                print(f'total_samples={self.num_samples}, {num_samples=}, {num_padding_tokens=}, {num_padding_images=}')
        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.img_context_token_id)
        try:
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
            ignore_flag = False
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
                  f'vit_embeds.shape={vit_embeds.shape}')
            n_token = selected.sum()
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
            # ignore_flag = True
            ignore_flag = False

        input_embeds = input_embeds.reshape(B, N, C)
        if self.attn_type:
            if self.attn_type=='ulysses':
                input_embeds=extract_local2(input_embeds,dist.get_rank(group),dist.get_world_size(group))
                position_ids=extract_local2(position_ids,dist.get_rank(group),dist.get_world_size(group))
                labels=extract_local2(labels,dist.get_rank(group),dist.get_world_size(group))
                loss_weight=extract_local2(torch.tensor(loss_weight),dist.get_rank(group),dist.get_world_size(group))
                loss_weight=list(loss_weight.numpy())
                attention_mask=attention_mask//dist.get_world_size(group)
            elif self.attn_type=='ring':
                input_embeds=extract_local(input_embeds,dist.get_rank(group),dist.get_world_size(group))
                position_ids=extract_local(position_ids,dist.get_rank(group),dist.get_world_size(group))
                labels=extract_local(labels,dist.get_rank(group),dist.get_world_size(group))
                if loss_weight:
                    loss_weight=extract_local(torch.tensor(loss_weight),dist.get_rank(group),dist.get_world_size(group))
                    loss_weight=list(loss_weight.numpy())
                attention_mask=attention_mask//dist.get_world_size(group)
        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            compress_seq=self.compress_seq,
            group_list=self.group_list,
            chunk_num=self.chunk_num,
            origin_cu_seq_lens=origin_cu_seq_lens,
            interaction=self.interaction,
            selected=selected
        )
        logits = outputs.logits
        
        loss = None
        if labels is not None and loss_weight is not None:
            # decoded_labels = global_tokenizer.decode(labels[0][labels[0]!=-100], skip_special_tokens=True)
            loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device)
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            shift_weights = loss_weight[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(reduction='none')
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            shift_weights = shift_weights.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            shift_weights = shift_weights.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

            shift_weights_sum = shift_weights.sum()
                
            if loss_reduction_all_gather:
                dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG)

            loss = loss * shift_weights
            loss = loss.sum() / shift_weights_sum
            if ignore_flag:
                loss = loss * 0.0
        elif labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
            if ignore_flag:
                loss = loss * 0.0
        params=dict(self.named_parameters())
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        # self.update_log(log_dict)
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        if self.ps_version == 'v1':
            warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
                          'which results in a transposed image.')
        else:
            x = x.permute(0, 2, 1, 3).contiguous()
        return x

    def extract_feature(self, pixel_values):
        # 选择视觉模型特定层的输出作为图片特征
        if self.select_layer == -1:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=False,
                return_dict=True).last_hidden_state
        else:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=True,
                return_dict=True).hidden_states[self.select_layer]
        # [batch_size, num_patches, vit_hidden_size]
        # 去除第一个标记
        vit_embeds = vit_embeds[:, 1:, :]

        # [batch_size, num_patches, vit_hidden_size] -> [batch_size, h, w, vit_hidden_size]
        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        # 像素混洗,降低分辨率,减少 num_patches
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        # 线性层,vit_hidden_size -> llm_hidden_size
        vit_embeds = self.mlp1(vit_embeds)
        return vit_embeds

    def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
                   history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
                   IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
        if history is not None or return_history:
            print('Now multi-turn chat is not supported in batch_chat.')
            raise NotImplementedError

        if image_counts is not None:
            num_patches_list = image_counts
            print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
        
        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id

        if verbose and pixel_values is not None:
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}')

        queries = []
        for idx, num_patches in enumerate(num_patches_list):
            question = questions[idx]
            if pixel_values is not None and '<image>' not in question:
                question = '<image>\n' + question
            template = get_conv_template(self.template)
            template.append_message(template.roles[0], question)
            template.append_message(template.roles[1], None)
            query = template.get_prompt()

            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
            query = query.replace('<image>', image_tokens, 1)
            queries.append(query)

        # tokenizer.padding_side = 'left'
        model_inputs = tokenizer(queries, return_tensors='pt', padding=False)
        input_ids = model_inputs['input_ids'].cuda()
        attention_mask = model_inputs['attention_mask'].cuda()
        eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
        generation_config['eos_token_id'] = eos_token_id
        generation_output = self.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config
        )
        responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
        responses = [response.split(template.sep)[0].strip() for response in responses]
        return responses

    def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
             num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
             verbose=False,**kwargs):
        if history is None and pixel_values is not None and '<image>' not in question:
            question = '<image>\n' + question

        # num_patches_list 用法:
        if num_patches_list is None:
            num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
        assert pixel_values is None or len(pixel_values) == sum(num_patches_list)

        # 设置图片上下文的 token id
        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id

        # 获取 Chat 模板
        template = get_conv_template(self.template)
        # 设置系统消息
        template.system_message = self.system_message
        # 设置分隔符 End Of Sentence
        eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)

        # 将历史对话添加到模板中
        history = [] if history is None else history
        for (old_question, old_answer) in history:
            template.append_message(template.roles[0], old_question)
            template.append_message(template.roles[1], old_answer)
        template.append_message(template.roles[0], question)
        template.append_message(template.roles[1], None)
        # 生成查询
        query = template.get_prompt()

        # verbose: 是否打印调试信息
        if verbose and pixel_values is not None:
            # pixel_values 形状: [batch_size, channels, height, width]
            # 其中 batch_size 即图片数量
            # 打印批处理大小信息
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}')

        # 将图片 token 插入到查询中,图片用占位符 IMG_CONTEXT_TOKEN 代替
        for num_patches in num_patches_list:
            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
            query = query.replace('<image>', image_tokens, 1)

        # 用分词器将查询转换为模型输入
        model_inputs = tokenizer(query, return_tensors='pt')
        # 文本对应的 token id,转换为 cuda 张量
        # ID 长度就是 Token 长度,形状为 [1, sequence_length]
        input_ids = model_inputs['input_ids'].cuda()
        # print(f'Token length: {input_ids.shape[1]}')
        # 实际输入掩码为 1,填充部分掩码为 0
        attention_mask = model_inputs['attention_mask'].cuda()
        # 分隔符 End Of Sentence
        generation_config['eos_token_id'] = eos_token_id
        if 'rope_pos_id_version' in kwargs:
            self.language_model.rope_pos_id_version=kwargs['rope_pos_id_version']
            pos_ids=[]
            ret={'input_ids':input_ids,'attention_mask':attention_mask}
            for i in range(input_ids.shape[0]):
                # cur_position_ids = ret['attention_mask'][i].long().cumsum(-1) - 1
                # cur_position_ids.masked_fill_(ret['attention_mask'][i] == 0, 1)

                if kwargs['rope_pos_id_version'] == 'default':
                    cur_dtype = torch.long
                    # bf16 -> long 会产生截断
                else:
                    cur_dtype = torch.float32

                if 'rope_pos_id_stride' in kwargs:
                    rope_pos_id_stride = kwargs['rope_pos_id_stride']
                else:
                    rope_pos_id_stride = None

                pos_ids.append(torch.tensor(get_rope_pos_id(ret, num_tiles=kwargs['num_tiles'][i], dtype=cur_dtype,
                                               rope_pos_id_version=kwargs['rope_pos_id_version'],
                                               position_id=torch.arange(0,input_ids.shape[1]),
                                               # position_id=cur_position_ids,
                                               boxes=kwargs['all_boxes'][i],
                                               orig_size=None,
                                               images=kwargs['image_list'][i],
                                               IMG_START_TOKEN=IMG_START_TOKEN,
                                               IMG_END_TOKEN=IMG_END_TOKEN, rope_pos_id_stride=rope_pos_id_stride)).cuda())
                
            pos_ids=torch.stack(pos_ids)
            if self.attn_type=='ulysses' or self.attn_type=='ring':
                if input_ids.shape[1]%(2*dist.get_world_size())!=0:
                    num_padding = 2*dist.get_world_size()-input_ids.shape[1]%(2*dist.get_world_size())
                    # 创建需要的 padding,input_ids 和 labels 填充值为 -100
                    padding_shape = (input_ids.shape[0], num_padding)
                    input_padding = torch.full(padding_shape, 1, dtype=input_ids.dtype, device=input_ids.device)
                    attn_mask_padding = torch.full(padding_shape, 1, dtype=attention_mask.dtype, device=attention_mask.device)
                    # 对 input_ids 和 labels 进行 padding
                    input_ids = torch.cat([input_ids, input_padding], dim=1)
                    attention_mask=torch.cat([attention_mask,attn_mask_padding],dim=1)
                                # position_ids 添加正确的递增填充
                    max_pos_id = pos_ids.max() + 1  # 找到当前最大 position_id
                    pos_padding = torch.arange(max_pos_id, max_pos_id + num_padding, device=input_ids.device)
                    pos_padding = pos_padding.unsqueeze(0).expand(input_ids.shape[0], -1)
                    pos_ids = torch.cat([pos_ids, pos_padding], dim=1)
            generation_output = self.generate(
                pixel_values=pixel_values,
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=pos_ids,
                **generation_config,
            )
        else:
            self.language_model.rope_pos_id_version='default'
            if self.attn_type=='ulysses' or self.attn_type=='ring':
                if input_ids.shape[1]%(2*dist.get_world_size())!=0:
                    num_padding = 2*dist.get_world_size()-input_ids.shape[1]%(2*dist.get_world_size())
                    # 创建需要的 padding,input_ids 和 labels 填充值为 -100
                    padding_shape = (input_ids.shape[0], num_padding)
                    input_padding = torch.full(padding_shape, 1, dtype=input_ids.dtype, device=input_ids.device)
                    attn_mask_padding = torch.full(padding_shape, 0, dtype=attention_mask.dtype, device=attention_mask.device)
                    # 对 input_ids 和 labels 进行 padding
                    input_ids = torch.cat([input_ids, input_padding], dim=1)
                    attention_mask=torch.cat([attention_mask,attn_mask_padding],dim=1)
            generation_output = self.generate(
                pixel_values=pixel_values,
                input_ids=input_ids,
                attention_mask=attention_mask,
                **generation_config,
            )
        # 解码生成的输出,跳过特殊 token
        response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
        # 根据分隔符分段
        response = response.split(template.sep)[0].strip()
        # 将结果写入历史
        history.append((question, response))
        if return_history:
            return response, history
        else:
            query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
            query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
            if verbose:
                print(query_to_print, response)
            return response

    @torch.no_grad()
    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:
        assert self.img_context_token_id is not None
        if pixel_values is not None:
            # 提取图片 embedding
            # [batch_size, channels, height, width] -> [batch_size, 每张图片的 patch 数, embedding_dim]
            if visual_features is not None:
                vit_embeds = visual_features
            else:
                vit_embeds = self.extract_feature(pixel_values)
            if self.posid_type=='qkvLearnable':
                added_embeds = self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
                vit_embeds = vit_embeds + added_embeds
                # vit_embeds=vit_embeds+self.local_posid(torch.arange(self.num_image_token).to(pixel_values.device))
            # 通过嵌入层将 token id 转化为嵌入向量
            # 其中图片用占位符 IMG_CONTEXT_TOKEN 的 embedding 代替
            input_embeds = self.language_model.get_input_embeddings()(input_ids)
            # [1, sequence_length, embedding_dim] -> [sequence_length, embedding_dim]
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)

            # [1, sequence_length] -> [sequence_length]
            input_ids = input_ids.reshape(B * N)

            selected = (input_ids == self.img_context_token_id)
            assert selected.sum() != 0
            
            # 图片 embedding: [总 Patch 数, embedding_dim]
            # 每个 patch 与一个占位符对应,对应一列 embedding
            input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, N, C)
        else:
            # 通过嵌入层将 token id 转化为嵌入向量
            # 例如 one hot 编码、Word2Vec、GloVe、FastText等
            # 嵌入层是一张查找表
            # [1, sequence_length] -> [1, sequence_length, embedding_dim]
            input_embeds = self.language_model.get_input_embeddings()(input_ids)
                    # 找到图片占位符的位置
        if 'position_ids' in generate_kwargs:
            pos_id=generate_kwargs['position_ids']
            if self.attn_type:
                if self.attn_type=='ulysses':
                    input_embeds=extract_local2(input_embeds,dist.get_rank(),dist.get_world_size())
                    attention_mask=extract_local2(attention_mask,dist.get_rank(),dist.get_world_size())
                    pos_id=extract_local2(pos_id,dist.get_rank(),dist.get_world_size())
                elif self.attn_type=='ring':
                    former_shape = input_embeds.shape
                    input_embeds=extract_local(input_embeds,dist.get_rank(),dist.get_world_size())
                    attention_mask=extract_local(attention_mask,dist.get_rank(),dist.get_world_size())
                    pos_id=extract_local(pos_id,dist.get_rank(),dist.get_world_size())
                generate_kwargs['position_ids']=pos_id
                
        else:
            if self.attn_type:
                if self.attn_type=='ulysses':
                    input_embeds=extract_local2(input_embeds,dist.get_rank(),dist.get_world_size())
                    attention_mask=extract_local2(attention_mask,dist.get_rank(),dist.get_world_size())
                elif self.attn_type=='ring':
                    former_shape = input_embeds.shape
                    input_embeds=extract_local(input_embeds,dist.get_rank(),dist.get_world_size())
                    attention_mask=extract_local(attention_mask,dist.get_rank(),dist.get_world_size())

        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs
    def update_log(self, new_log_dict):
        if not hasattr(self, 'log_dict'):
            self.log_dict = {}
        for key, value in new_log_dict.items():
            if 'loss' in key:
                if key not in self.log_dict:
                    self.log_dict[key] = value
                else:
                    self.log_dict[key] += value
            else:
                # just copy it
                self.log_dict[key] = value

def get_rope_pos_id(ret, num_tiles, dtype, rope_pos_id_version='default', position_id=None,boxes=None, orig_size=None,images=None,IMG_START_TOKEN='<img>',IMG_END_TOKEN='</img>',rope_pos_id_stride=None):
        image_start_token_id = global_tokenizer.convert_tokens_to_ids(IMG_START_TOKEN)
        image_end_token_id = global_tokenizer.convert_tokens_to_ids(IMG_END_TOKEN)
        num_image_token=256
        rope_pos_id_list = []

        input_ids_0 = ret['input_ids'][0]
        attention_mask_0 = ret['attention_mask'][0]
        image_start_token_id_idxs = torch.where(input_ids_0 == image_start_token_id)[0]
        image_end_token_id_idxs = torch.where(input_ids_0 == image_end_token_id)[0]

        last_record_pos_id = -1
        start_index = 0
        for i in range(len(image_start_token_id_idxs)):
            # 根据序列中的 IMG_START_TOKEN 出现的位置,锁定需要处理的图像 id 序列
            # 注:这里的 IMG_START_TOKEN 和 IMG_END_TOKEN 应当与文本的处理方式相同
            box = boxes[i]
            image = images[i]
            
            rope_pos_id_pre = attention_mask_0[start_index:image_start_token_id_idxs[i] + 1].long().cumsum(-1) - 1 + (last_record_pos_id + 1) # 从处理好的序列的最后一个 global id 开始 count
            rope_pos_id_pre.masked_fill_(attention_mask_0[start_index:image_start_token_id_idxs[i] + 1] == 0, 1)
            rope_pos_id_list.append(rope_pos_id_pre)

            last_record_pos_id = rope_pos_id_pre[-1].long()

            num_tile = num_tiles[i]
            num_sub_imgs = num_tile - 1
            is_last = (i == len(image_start_token_id_idxs) - 1)

            if rope_pos_id_version == 'v0':
                # 子图为小数,且不管多少个子图,其分配的总 global id 跨度为1;缩略图单独分配完整的,跨度为 1的 global id. Example:
                # start_id = 100; 100 - 101 (分给 4 * 256),子图数目为4; 101 - 102 (分给 256) 缩略图
                if num_sub_imgs > 0:
                    split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)  # 小数数值的 tensor 作为变换的数据取值
                    origin_split_img_id_idxs = split_img_id_idxs
                    ############################## 进行位置变换 ##############################
                    # 先计算第一个子图对应 index
                    rearange_idx_list = []
                    rearange_idx_list_list = []
                    base_index_list = []
                    num_img_token_in_length = int(num_image_token ** 0.5)
                    num_patch_width = int(box[-1][2] // box[0][2])
                    num_patch_height = int(box[-1][3] // box[0][2])
                    assert num_patch_width * num_patch_height == len(box)

                    num_total_patch_width_token = num_patch_width * num_img_token_in_length
                    num_total_patch_height_token = num_patch_height * num_img_token_in_length
                    assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)

                    for k in range(num_image_token):
                        map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (k % num_img_token_in_length)
                        base_index_list.append(map_idx)

                    # 计算其他子图对应第一个子图的 offset

                    for k in range(num_sub_imgs):
                        patch_row = k // num_patch_width
                        patch_col = k % num_patch_width
                        offset = patch_row * (num_image_token * num_patch_width) + patch_col * num_img_token_in_length
                        # print(f'{k=}, {offset=}')
                        dst_index_list = [base_index + offset for base_index in base_index_list]
                        rearange_idx_list.extend(dst_index_list)
                        rearange_idx_list_list.append(dst_index_list)

                    ############################## plot 验证 ##############################
                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
                    #              zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
                    #              zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)

                    ############################## rearrange ##############################
                    split_img_id_idxs = split_img_id_idxs[rearange_idx_list]

                    rope_pos_id_list.append(split_img_id_idxs)
                    thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = origin_split_img_id_idxs[-1].long()
                else:
                    thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1,
                                                    num_image_token + 1)[1:].to(dtype=dtype)  # 缩略图
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = (last_record_pos_id + 1).long()

                # 验证是否能够恢复为等差数列
                if num_tile > 1:
                    gt_pos_id = torch.linspace(last_record_pos_id - 2, last_record_pos_id - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)
                    # self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, dtype, is_last)

            elif rope_pos_id_version == 'v1':
                # 子图为小数,若有 N 个子图,其分配的总 global id 跨度为 N;缩略图单独分配完整的,跨度为 1的 global id. Example:
                # start_id = 100; 100 - 104 (分给 4 * 256),子图数目为4; 104 - 105 (分给 256) 缩略图
                if num_sub_imgs > 0:
                    split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_tile - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)  # 小数数值的 tensor 作为变换的数据取值
                    origin_split_img_id_idxs = split_img_id_idxs
                    ############################## 进行位置变换 ##############################
                    # 先计算第一个子图对应 index
                    rearange_idx_list = []
                    rearange_idx_list_list = []
                    base_index_list = []
                    # rearange_split_img_id_idxs_list = []
                    num_img_token_in_length = int(num_image_token ** 0.5)
                    num_patch_width = int(box[-1][2] // box[0][2])
                    num_patch_height = int(box[-1][3] // box[0][2])
                    assert num_patch_width * num_patch_height == len(box)

                    num_total_patch_width_token = num_patch_width * num_img_token_in_length
                    num_total_patch_height_token = num_patch_height * num_img_token_in_length
                    assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
                    num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)

                    for k in range(num_image_token):
                        map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
                                    k % num_img_token_in_length)
                        base_index_list.append(map_idx)

                    # 计算其他子图对应第一个子图的 offset

                    for k in range(num_sub_imgs):
                        patch_row = k // num_patch_width
                        patch_col = k % num_patch_width
                        offset = patch_row * (
                                    num_image_token * num_patch_width) + patch_col * num_img_token_in_length
                        # print(f'{k=}, {offset=}')
                        dst_index_list = [base_index + offset for base_index in base_index_list]
                        rearange_idx_list.extend(dst_index_list)
                        rearange_idx_list_list.append(dst_index_list)
                        # rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])

                    ############################## plot 验证 ##############################
                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)

                    ############################## rearrange ##############################
                    split_img_id_idxs = split_img_id_idxs[rearange_idx_list]

                    rope_pos_id_list.append(split_img_id_idxs)
                    # thumbnail_id_idxs = torch.linspace(last_record_pos_id + 1, last_record_pos_id + 2, num_image_token + 1)[1:].to(dtype=dtype)  # 缩略图
                    thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = origin_split_img_id_idxs[-1].long()
                else:
                    thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + 1, num_image_token + 1)[1:].to(dtype=dtype)  # 缩略图
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = (last_record_pos_id + 1).long()

                # 验证是否能够恢复为等差数列
                if num_tile > 1:
                    gt_pos_id = torch.linspace(last_record_pos_id - 1 - (num_tile - 1), last_record_pos_id - 1, (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)
                    # self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, dtype)

            elif rope_pos_id_version == 'v2':
                # 子图处理方式同文本(N 个子图分配 N * 256 个 global id);一个缩略图分配 256 * N 个的 global id.
                # 子图处理同 v0, v1,也对 global id 根据空间关系做 arrange
                if num_sub_imgs > 0:
                    split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_sub_imgs * num_image_token, num_sub_imgs * num_image_token + 1)[1:].long()  # long 数值的 tensor 作为变换的数据取值
                    last_id_for_split_img = last_record_pos_id + num_sub_imgs * num_image_token
                    origin_split_img_id_idxs = split_img_id_idxs
                    ############################## 进行位置变换 ##############################
                    # 先计算第一个子图对应 index
                    rearange_idx_list = []
                    rearange_idx_list_list = []
                    base_index_list = []
                    # rearange_split_img_id_idxs_list = []
                    num_img_token_in_length = int(num_image_token ** 0.5)
                    num_patch_width = int(box[-1][2] // box[0][2])
                    num_patch_height = int(box[-1][3] // box[0][2])
                    assert num_patch_width * num_patch_height == len(box)

                    num_total_patch_width_token = num_patch_width * num_img_token_in_length
                    num_total_patch_height_token = num_patch_height * num_img_token_in_length
                    assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
                        num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)

                    for k in range(num_image_token):
                        map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
                                k % num_img_token_in_length)
                        base_index_list.append(map_idx)

                    # 计算其他子图对应第一个子图的 offset

                    for k in range(num_sub_imgs):
                        patch_row = k // num_patch_width
                        patch_col = k % num_patch_width
                        offset = patch_row * (
                                num_image_token * num_patch_width) + patch_col * num_img_token_in_length
                        # print(f'{k=}, {offset=}')
                        dst_index_list = [base_index + offset for base_index in base_index_list]
                        rearange_idx_list.extend(dst_index_list)
                        rearange_idx_list_list.append(dst_index_list)
                        # rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])

                    ############################## plot 验证 ##############################

                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
                    #              zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
                    #              zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)

                    ############################## rearrange ##############################
                    split_img_id_idxs = split_img_id_idxs[rearange_idx_list]

                    rope_pos_id_list.append(split_img_id_idxs)
                    thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = origin_split_img_id_idxs[-1].long()
                else:
                    thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].long()  # 缩略图,和 default 处理一致
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = thumbnail_id_idxs[-1].long()

                # 验证是否能够恢复为等差数列
                if num_tile > 1:
                    gt_pos_id = torch.linspace(last_id_for_split_img - num_image_token * num_sub_imgs,
                                               last_id_for_split_img,
                                               num_sub_imgs * num_image_token + 1)[1:].long()
                    # self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, gt_pos_id.dtype)

            elif rope_pos_id_version == 'v3':
                # N 个子图共用跨度为 256 的 global id;一个缩略图正常分配 256 个 global id
                if num_sub_imgs > 0:
                    split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype)  # 小数数值的 tensor 作为变换的数据取值
                    origin_split_img_id_idxs = split_img_id_idxs
                    ############################## 进行位置变换 ##############################
                    # 先计算第一个子图对应 index
                    rearange_idx_list = []
                    rearange_idx_list_list = []
                    base_index_list = []
                    # rearange_split_img_id_idxs_list = []
                    num_img_token_in_length = int(num_image_token ** 0.5)
                    num_patch_width = int(box[-1][2] // box[0][2])
                    num_patch_height = int(box[-1][3] // box[0][2])
                    assert num_patch_width * num_patch_height == len(box)

                    num_total_patch_width_token = num_patch_width * num_img_token_in_length
                    num_total_patch_height_token = num_patch_height * num_img_token_in_length
                    assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
                        num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)

                    for k in range(num_image_token):
                        map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
                                k % num_img_token_in_length)
                        base_index_list.append(map_idx)

                    # 计算其他子图对应第一个子图的 offset

                    for k in range(num_sub_imgs):
                        patch_row = k // num_patch_width
                        patch_col = k % num_patch_width
                        offset = patch_row * (
                                num_image_token * num_patch_width) + patch_col * num_img_token_in_length
                        # print(f'{k=}, {offset=}')
                        dst_index_list = [base_index + offset for base_index in base_index_list]
                        rearange_idx_list.extend(dst_index_list)
                        rearange_idx_list_list.append(dst_index_list)
                        # rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])

                    ############################## plot 验证 ##############################

                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
                    #              zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
                    #              zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)

                    ############################## rearrange ##############################
                    split_img_id_idxs = split_img_id_idxs[rearange_idx_list]

                    rope_pos_id_list.append(split_img_id_idxs)
                    thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = origin_split_img_id_idxs[-1].long()
                else:
                    thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].to(dtype=dtype)  # 缩略图,和 default 处理一致
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = thumbnail_id_idxs[-1].to(dtype=dtype)

                # 验证是否能够恢复为等差数列
                if num_tile > 1:
                    gt_pos_id = torch.linspace(last_record_pos_id - num_image_token - num_image_token,
                                               last_record_pos_id - num_image_token,
                                               num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype)
                    # self.eval_posid_by_rearange(box, rope_pos_id_list, gt_pos_id, num_tile, gt_pos_id.dtype)

            elif rope_pos_id_version == 'v4':
                # stride 是可变长的
                assert rope_pos_id_stride is not None, 'when rope_pos_id_version == v4, rope_pos_id_stride should not be None'
                if num_sub_imgs > 0:
                    num_sub_image_tokens = num_image_token * num_sub_imgs
                    split_img_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + rope_pos_id_stride, num_sub_imgs * num_image_token + 1)[1:].to(dtype=dtype)  # 小数数值的 tensor 作为变换的数据取值
                    assert len(split_img_id_idxs) == num_sub_image_tokens
                    origin_split_img_id_idxs = split_img_id_idxs
                    ############################## 进行位置变换 ##############################
                    # 先计算第一个子图对应 index
                    rearange_idx_list = []
                    rearange_idx_list_list = []
                    base_index_list = []
                    # rearange_split_img_id_idxs_list = []
                    num_img_token_in_length = int(num_image_token ** 0.5)
                    num_patch_width = int(box[-1][2] // box[0][2])
                    num_patch_height = int(box[-1][3] // box[0][2])
                    assert num_patch_width * num_patch_height == len(box)

                    num_total_patch_width_token = num_patch_width * num_img_token_in_length
                    num_total_patch_height_token = num_patch_height * num_img_token_in_length
                    assert num_total_patch_width_token * num_total_patch_height_token == num_sub_imgs * num_image_token, (
                        num_total_patch_width_token * num_total_patch_height_token, num_sub_imgs * num_image_token)

                    for k in range(num_image_token):
                        map_idx = (k // num_img_token_in_length) * num_total_patch_width_token + (
                                k % num_img_token_in_length)
                        base_index_list.append(map_idx)

                    # 计算其他子图对应第一个子图的 offset

                    for k in range(num_sub_imgs):
                        patch_row = k // num_patch_width
                        patch_col = k % num_patch_width
                        offset = patch_row * (num_image_token * num_patch_width) + patch_col * num_img_token_in_length
                        # print(f'{k=}, {offset=}')
                        dst_index_list = [base_index + offset for base_index in base_index_list]
                        rearange_idx_list.extend(dst_index_list)
                        rearange_idx_list_list.append(dst_index_list)
                        # rearange_split_img_id_idxs_list.append(split_img_id_idxs[dst_index_list])

                    ############################## plot 验证 ##############################

                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
                    #              zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, None)
                    # img_boxes = [(deepcopy(img), cur_box, cur_posid) for img, cur_box, cur_posid in
                    #              zip(image[:-1], box, rearange_idx_list_list)]
                    # self.eval_posid_by_plot(img_boxes, rope_pos_id_version, split_img_id_idxs)

                    ############################## rearrange ##############################
                    split_img_id_idxs = split_img_id_idxs[rearange_idx_list]

                    rope_pos_id_list.append(split_img_id_idxs)
                    thumbnail_id_idxs = origin_split_img_id_idxs.reshape([num_image_token, -1]).to(dtype=dtype).mean(dim=1).view(-1)
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = origin_split_img_id_idxs[-1].long()
                else:
                    thumbnail_id_idxs = torch.linspace(last_record_pos_id, last_record_pos_id + num_image_token, num_image_token + 1)[1:].to(dtype=dtype)  # 缩略图,和 default 处理一致
                    rope_pos_id_list.append(thumbnail_id_idxs)
                    last_record_pos_id = thumbnail_id_idxs[-1].to(dtype=dtype)

            elif rope_pos_id_version == 'v5':
                assert rope_pos_id_stride is not None, 'when rope_pos_id_version == v5, self.rope_pos_id_stride should not be None'
                small_stride = rope_pos_id_stride / num_image_token
                # split_img_id_idxs = torch.arange(last_record_pos_id, last_record_pos_id + small_stride * (num_image_token * num_tile + 1), small_stride)[1:].to(dtype=dtype)
                split_img_id_idxs = torch.linspace(last_record_pos_id,last_record_pos_id+small_stride*(num_image_token * num_tile ),(num_image_token * num_tile + 1))[1:].to(dtype=dtype)
                rope_pos_id_list.append(split_img_id_idxs)
                last_record_pos_id = torch.ceil(split_img_id_idxs[-1]).long()
            elif rope_pos_id_version == 'v6':
                random_from=[1,2,4,8,16,32,64,128,256]
                rope_pos_id_stride=random.choice(random_from)
                small_stride = rope_pos_id_stride / num_image_token
                # split_img_id_idxs = torch.arange(last_record_pos_id, last_record_pos_id + small_stride * (num_image_token * num_tile + 1), small_stride)[1:].to(dtype=dtype)
                split_img_id_idxs = torch.linspace(last_record_pos_id,last_record_pos_id+small_stride*(num_image_token * num_tile ),(num_image_token * num_tile + 1))[1:].to(dtype=dtype)
                rope_pos_id_list.append(split_img_id_idxs)
                last_record_pos_id = torch.ceil(split_img_id_idxs[-1]).long()
            elif rope_pos_id_version == 'default':
                # baseline
                # 无特殊处理的做法
                split_img_id_idxs = torch.linspace(last_record_pos_id,
                                                   last_record_pos_id + (num_tile - 1) * num_image_token,
                                                   (num_tile - 1) * num_image_token + 1)[1:].to(dtype=dtype)  # 子图
                rope_pos_id_list.append(split_img_id_idxs)
                thumbnail_id_idxs = torch.linspace(last_record_pos_id + (num_tile - 1) * num_image_token,
                                                   last_record_pos_id + num_tile * num_image_token,
                                                   num_image_token + 1)[1:].to(dtype=dtype)  # 缩略图
                rope_pos_id_list.append(thumbnail_id_idxs)
                last_record_pos_id = (last_record_pos_id + num_tile * num_image_token).long()
            else:
                raise NotImplementedError(f'not implement for {rope_pos_id_version}')
            try:
                start_index = image_start_token_id_idxs[i] + num_tile * num_image_token + 1
                assert input_ids_0[start_index] == image_end_token_id # 下一次迭代的开头应该是 IMG_END_TOKEN
                assert start_index == image_end_token_id_idxs[i] # 下一次迭代的开头应该是 IMG_END_TOKEN
            except:
                import ipdb
                ipdb.set_trace()

        if image_end_token_id_idxs[-1] != input_ids_0.shape[0] - 1:
            # 末尾还有待处理的非图像 id 的情况
            assert image_end_token_id_idxs[-1] == start_index # 应当从最后一个 IMG_END_TOKEN 开始
            rope_pos_id_pre = attention_mask_0[start_index:].long().cumsum(-1) - 1 + (last_record_pos_id + 1)
            rope_pos_id_pre.masked_fill_(attention_mask_0[start_index:] == 0, 1)
            rope_pos_id_list.append(rope_pos_id_pre)

        rope_pos_id_list=[_.to('cpu') for _ in rope_pos_id_list]
        rope_pos_id = torch.cat(rope_pos_id_list).to(dtype=dtype)
        if rope_pos_id_version == 'default':
            rope_pos_id = rope_pos_id.long() # 不做特殊处理的 rope_pos_id 应当等于 position_ids
            assert torch.equal(rope_pos_id, position_id.to(rope_pos_id.device)), (rope_pos_id, position_id.to(rope_pos_id.device))
            assert torch.allclose(rope_pos_id, position_id.to(rope_pos_id.device), atol=1e-32)
        
        assert rope_pos_id.shape == input_ids_0.shape

        return list(rope_pos_id.numpy())