File size: 112,860 Bytes
81d64a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 |
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch InternLM2 model."""
import math
import queue
import threading
import warnings
from typing import List, Optional, Tuple, Union, Callable
from internvl.model.internlm2.configuration_internlm2 import InternLM2Config
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torch.distributed as dist
from einops import rearrange
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (add_start_docstrings,
add_start_docstrings_to_model_forward, logging,
replace_return_docstrings)
from internvl.train.compress_seq_trainer import chunk_with_boundaries
try:
from transformers.generation.streamers import BaseStreamer
except: # noqa # pylint: disable=bare-except
BaseStreamer = None
from .configuration_internlm2 import InternLM2Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = 'InternLM2Config'
FINAL_SIZE=100
flash_attn_func, flash_attn_varlen_func = None, None
pad_input, index_first_axis, unpad_input = None, None, None
try:
from flash_attn import flash_attn_func as _flash_attn_func
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis as _index_first_axis
from flash_attn.bert_padding import pad_input as _pad_input
from flash_attn.bert_padding import unpad_input as _unpad_input
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
has_flash_attn = True
except:
has_flash_attn = False
class AttentionPooling(nn.Module):
def __init__(self, input_dim, n_prime):
"""
input_dim: 输入特征的维度 C
n_prime: 希望保留的时间步数量 N'
"""
super(AttentionPooling, self).__init__()
self.query = nn.Linear(input_dim, n_prime) # 输出 N' 个注意力分数
def forward(self, x):
"""
x: 输入 Tensor,形状为 (batch_size, seq_len, input_dim)
返回: (batch_size, n_prime, input_dim)
"""
# 计算 attention scores: (batch_size, seq_len, n_prime)
attention_scores = self.query(x)
# 归一化每个样本内的 seq_len 维度 (softmax over seq_len)
attention_weights = F.softmax(attention_scores, dim=1) # (batch_size, seq_len, n_prime)
# 对输入加权求和,生成 (batch_size, n_prime, input_dim)
output = torch.einsum('bni,bnd->bid', attention_weights, x)
return output
class TopKPooling(nn.Module):
def __init__(self, input_dim, n_prime):
"""
input_dim: 输入特征的维度 C
n_prime: 希望保留的时间步数量 N'
"""
super(TopKPooling, self).__init__()
self.query = nn.Linear(input_dim, 1) # 输出单个注意力分数用于排序
self.n_prime = n_prime # 希望保留的时间步数
def forward(self, x):
"""
x: 输入 Tensor,形状为 (batch_size, seq_len, input_dim)
返回: (batch_size, n_prime, input_dim)
"""
# 计算 attention scores: (batch_size, seq_len, 1)
attention_scores = self.query(x).squeeze(-1) # (batch_size, seq_len)
# 获取每个样本中注意力分数最高的 n_prime 个时间步的索引
topk_scores, topk_indices = torch.topk(attention_scores, self.n_prime, dim=1) # (batch_size, n_prime)
# 根据 topk_indices 从输入 x 中选择相应的时间步
batch_indices = torch.arange(x.size(0)).unsqueeze(-1).expand(-1, self.n_prime) # (batch_size, n_prime)
selected_x = x[batch_indices, topk_indices] # (batch_size, n_prime, input_dim)
# 使用 softmax 归一化 top-k 分数
attention_weights = F.softmax(topk_scores, dim=1).unsqueeze(-1) # (batch_size, n_prime, 1)
# 加权求和,生成输出: (batch_size, n_prime, input_dim)
output = selected_x * attention_weights # (batch_size, n_prime, input_dim)
return output
class LayerScale(nn.Module):
def __init__(
self,
dim: int,
init_values: float = 1e-5,
inplace: bool = False,
) -> None:
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class Sigmoid(nn.Module):
def __init__(
self,
dim: int,
init_values: float = 0.0,
inplace: bool = False,
) -> None:
super().__init__()
self.inplace = inplace
self.gate = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x1,x2):
return x1*torch.sigmoid(self.gate)+x2*(1-torch.sigmoid(self.gate))
def _import_flash_attn():
global flash_attn_func, flash_attn_varlen_func
global pad_input, index_first_axis, unpad_input
try:
from flash_attn import flash_attn_func as _flash_attn_func
from flash_attn import \
flash_attn_varlen_func as _flash_attn_varlen_func
from flash_attn.bert_padding import \
index_first_axis as _index_first_axis
from flash_attn.bert_padding import pad_input as _pad_input
from flash_attn.bert_padding import unpad_input as _unpad_input
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
except ImportError:
raise ImportError('flash_attn is not installed.')
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
class InternLM2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
InternLM2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
try:
from functools import partial
from apex.normalization import FusedRMSNorm
InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
except ImportError:
# using the normal LlamaRMSNorm
pass
except Exception:
print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
pass
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
class InternLM2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.inv_freq = None
# inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
# self.register_buffer('inv_freq', inv_freq, persistent=False)
self.max_seq_len_cached = -1
# Build here to make `torch.jit.trace` work.
# self._set_cos_sin_cache(
# seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
# )
def _set_cos_sin_cache(self, seq_len, device, dtype):
if self.inv_freq is None:
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
del self.inv_freq
self.register_buffer('inv_freq', inv_freq, persistent=False)
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
# freqs = torch.einsum('i,j->ij', t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
# if self.max_seq_len_cached == -1:
# self._set_cos_sin_cache(seq_len=self.max_position_embeddings, device=x.device, dtype=x.dtype)
if seq_len > self.max_seq_len_cached:
# print(x.dtype)
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
def scale_position_ids(position_ids, scaling_factor,selected):
# 去掉批次维度
position_ids = position_ids.squeeze(0)
# Step 1: 计算是否等差为 1
diff = torch.diff(position_ids)
is_arithmetic = (diff == 1)
# 如果没有等差为 1 的部分,直接返回
if is_arithmetic.sum() == 0:
return position_ids.unsqueeze(0)
# Step 2: 标记 chunks
# 找出每个 chunk 的起始点
changes = torch.where(is_arithmetic[:-1] != is_arithmetic[1:])[0] + 1
chunks_indices = torch.cat([torch.tensor([0]).to(position_ids.device), changes, torch.tensor([len(position_ids)]).to(position_ids.device)])
# Step 3: 按 chunk 进行缩放
scaled_positions = torch.empty_like(position_ids, dtype=torch.float32)
last_scaled_value = None
last_value = None
for i in range(len(chunks_indices) - 1):
start, end = chunks_indices[i], chunks_indices[i + 1]
chunk = position_ids[start:end]
is_arith = is_arithmetic[start]
if is_arith: # 如果是等差数列
if last_scaled_value is not None and chunk[0]!=0:
# 使用最后一个缩放值和最后一个原始值计算偏移
# chunk*scaled_factor+bias
# chunk[0]*scaled_factor+bias=ceil(last_scaled_value)
scaled_chunk = chunk * scaling_factor - chunk[0]*scaling_factor+torch.ceil(last_scaled_value+chunk[0]-last_value)
else:
scaled_chunk = chunk * scaling_factor
last_scaled_value = scaled_chunk[-1]
last_value = chunk[-1]
else: # 非等差数列,保持原始间距
if last_scaled_value is not None and chunk[0]!=0:
# chunk+bias
# chunk[0]+bias=torch.ceil(last_scaled_value)
offset = torch.ceil(last_scaled_value+scaling_factor) -chunk[0]
scaled_chunk = offset + (chunk)
else:
scaled_chunk = chunk
last_scaled_value = scaled_chunk[-1]
last_value = chunk[-1]
scaled_positions[start:end] = scaled_chunk
return scaled_positions.unsqueeze(0)
class InternLM2newRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None,scaling_factor=1.0,scale_img=False):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.inv_freq = None
self.scaling_factor=scaling_factor
self.scale_img=scale_img
# inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
# self.register_buffer('inv_freq', inv_freq, persistent=False)
self.max_seq_len_cached = -1
# Build here to make `torch.jit.trace` work.
# self._set_cos_sin_cache(
# seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
# )
def _set_cos_sin_cache(self, pos_id, device, dtype,selected):
if self.inv_freq is None:
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
del self.inv_freq
self.register_buffer('inv_freq', inv_freq, persistent=False)
# freqs = torch.einsum('i,j->ij', t, self.inv_freq)
if self.scaling_factor!=1.0:
if self.scale_img:
pos_id=pos_id*self.scaling_factor
else:
pos_id=scale_position_ids(pos_id,self.scaling_factor,selected)
pos_id=pos_id.squeeze(0)
freqs = torch.outer(pos_id, self.inv_freq.to(device=pos_id.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
def forward(self, x, global_posid=None,selected=None):
# x: [bs, num_attention_heads, seq_len, head_size]
self._set_cos_sin_cache(pos_id=global_posid, device=x.device, dtype=x.dtype,selected=selected)
return (
self.cos_cached[:].to(dtype=x.dtype),
self.sin_cached[:].to(dtype=x.dtype),
)
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
if self.inv_freq is None:
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
del self.inv_freq
self.register_buffer('inv_freq', inv_freq, persistent=False)
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
# print(t, self.scaling_factor)
# print(t.dtype)
# freqs = torch.einsum('i,j->ij', t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
# print(freqs)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
Credits to the Reddit users /u/bloc97 and /u/emozilla.
"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
if self.inv_freq is None:
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
del self.inv_freq
self.register_buffer('inv_freq', inv_freq, persistent=False)
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer('inv_freq', inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
# freqs = torch.einsum('i,j->ij', t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
class InternLM2RotaryEmbedding2D(nn.Module):
def __init__(self, dim, max_position_embeddings=16, base=100, device=None):
"""
For image of 16x16 tokens, only 16x16 position embeddings are needed
Base is set to 100, distinguishing from the global implementation, smaller base is used for fewer max tokens
Modify if needed
"""
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
theta = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
x = torch.arange(max_position_embeddings, device=device).to(dtype=theta.dtype)
y = torch.arange(max_position_embeddings, device=device).to(dtype=theta.dtype)
freqs_x = torch.outer(x, theta[0::2].to(device=x.device))
freqs_y = torch.outer(y, theta[1::2].to(device=y.device))
freqs_x = torch.cat((freqs_x, freqs_x), dim=-1)
freqs_y = torch.cat((freqs_y, freqs_y), dim=-1)
freqs = torch.zeros(max_position_embeddings, max_position_embeddings, self.dim, device=device, dtype=torch.float32)
freqs[..., 0::2] = freqs_x[:, None, :]
freqs[..., 1::2] = freqs_y[None, :, :]
self.cos = freqs.cos()
self.sin = freqs.sin()
def forward(self, x: torch.Tensor, h: int, w: int):
"""
h and w are shape of image
shape of x does not matter since only dtype is used
"""
return (
self.cos[:h, :w].to(dtype=x.dtype),
self.sin[:h, :w].to(dtype=x.dtype),
)
# Copied from transformers.model.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb; float
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos[position_ids].unsqueeze(unsqueeze_dim).float()
sin = sin[position_ids].unsqueeze(unsqueeze_dim).float()
q_dtype, k_dtype = q.dtype, k.dtype
q, k = q.float(), k.float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed.to(dtype=q_dtype), k_embed.to(dtype=k_dtype)
def apply_rotary_pos_emb_single(states, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the states tensors."""
cos = cos[position_ids].unsqueeze(unsqueeze_dim).float()
sin = sin[position_ids].unsqueeze(unsqueeze_dim).float()
states_dtype = states.dtype
states = states.float()
states_embed = (states * cos) + (rotate_half(states) * sin)
return states_embed.to(dtype=states_dtype)
def apply_rotary_pos_emb_2D(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
position_ids: torch.Tensor=None
):
"""
Input (q, k) shape: [bs, num_attention_heads, h, w, hidden_dim] for both
Input (cos, sin) shape: [h, w, hidden_dim] for both, which is guaranteed by InternLM2RotaryEmbedding2D.forward, so no sqeeze or transpose is needed for cos and sin. But for q and k, be causious!
position_ids is a 3D tensor, the first dimension represents squence of tokens, the next two represent (x, y) ids. default is torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij'), dim=-1)
output shape: [bs, num_attention_heads, h, w, hidden_dim]
Example:
h = w = 16
embedding2D = InternLM2RotaryEmbedding2D(dim)
q = torch.randn(bs, num_head, h, w, dim)
k = torch.randn(bs, num_head, h, w, dim)
cos, sin = embedding2D(q, h, w)
q_embed, k_embed = apply_rotary_pos_emb_2D(q, k, cos, sin)
print(q_embed.shape, k_embed.shape)
"""
if position_ids is None:
h, w, _ = cos.size()
position_ids = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij'), dim=-1)
x_pos = position_ids[..., 0]
y_pos = position_ids[..., 1]
cos = cos[x_pos, y_pos].float()
sin = sin[x_pos, y_pos].float()
q_dtype, k_dtype = q.dtype, k.dtype
q, k = q.float(), k.float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed.to(dtype=q_dtype), k_embed.to(dtype=k_dtype)
class InternLM2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
return down_proj
# Copied from transformers.model.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
class InternLM2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternLM2Config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
f' and `num_heads`: {self.num_heads}).'
)
self.wqkv = nn.Linear(
self.hidden_size,
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
bias=config.bias,
)
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
self._init_rope()
def _init_rope(self):
# if self.config.posid_type=='qkLearnable':
# self.local_posid=nn.E
if self.training:
self.config.rope_scaling['factor']=1.0
if self.config.rope_pos_id_version != "default":
self.config.rope_scaling['type']='new'
if self.config.rope_scaling is None:
self.rotary_emb = InternLM2RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.config.rope_theta,
)
else:
scaling_type = self.config.rope_scaling['type']
scaling_factor = self.config.rope_scaling['factor']
if scaling_type == 'dynamic':
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.config.rope_theta,
scaling_factor=scaling_factor,
)
elif scaling_type == 'linear':
# print(f'init linear RoPE: {scaling_type}, {scaling_factor}')
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.config.rope_theta,
scaling_factor=scaling_factor,
)
elif scaling_type == 'new':
self.rotary_emb = InternLM2newRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.config.rope_theta,
scaling_factor=scaling_factor,
scale_img=self.config.scale_img,
)
else:
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
return self.rotary_emb
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
'Please make sure use `attention_mask` instead.`'
)
bsz, q_len, _ = hidden_states.size()
qkv_states = self.wqkv(hidden_states)
qkv_states = rearrange(
qkv_states,
'b q (h gs d) -> b q h gs d',
gs=2 + self.num_key_value_groups,
d=self.head_dim,
)
query_states = qkv_states[..., : self.num_key_value_groups, :]
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
key_states = qkv_states[..., -2, :]
value_states = qkv_states[..., -1, :]
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
f' {attn_weights.size()}'
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
f' {attn_output.size()}'
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.wo(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
class InternLM2FlashAttention2(InternLM2Attention):
"""
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def init_interactions(self):
if self.config.posid_type == 'qkLearnable':
self.num_image_token = 256
self.local_posid = nn.Embedding(self.num_image_token, self.config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
selected: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# InternLM2FlashAttention2 attention does not support output_attentions
# q 【100, E】
# kv 【200, E】
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
'Please make sure use `attention_mask` instead.`'
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop('padding_mask')
output_attentions = False
bsz, q_len, _ = hidden_states.size()
qkv_states = self.wqkv(hidden_states)
qkv_states = rearrange(
qkv_states,
'b q (h gs d) -> b q h gs d',
gs=2 + self.num_key_value_groups,
d=self.head_dim,
)
query_states = qkv_states[..., : self.num_key_value_groups, :]
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
key_states = qkv_states[..., -2, :]
value_states = qkv_states[..., -1, :]
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if self.config.posid_type == 'qkLearnable':
image_pos_emb = self.local_posid(torch.arange(self.num_image_token).to(query_states.device))
num_images = selected.shape[0] // self.num_image_token
image_indices = selected.view(num_images, self.num_image_token)
for i in range(num_images):
image_token_indices = image_indices[i]
image_query_states = torch.index_select(query_states, dim=2, index=image_token_indices)
image_key_states = torch.index_select(key_states, dim=2, index=image_token_indices)
image_query_states += image_pos_emb.unsqueeze(0).unsqueeze(0)
image_key_states += image_pos_emb.unsqueeze(0).unsqueeze(0)
query_states.index_copy_(2, image_token_indices, image_query_states)
key_states.index_copy_(2, image_token_indices, image_key_states)
kv_seq_len=int((position_ids.max()+1).item())
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if isinstance(self.rotary_emb,InternLM2newRotaryEmbedding):
cos, sin = self.rotary_emb(value_states, global_posid=position_ids,selected=selected)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, torch.arange(0,position_ids.shape[1]).unsqueeze(0))
else:
position_ids=position_ids.to(torch.long)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = self._flash_attention_forward(
query_states, key_states, value_states, attention_mask, q_len,group=local_group
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.wo(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None,group=None,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
# Contains at least one padding token in the sequence
causal = self.is_causal and query_length != 1
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
# if attn_type=='ring':
attn_output_unpad,s1,s2 = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
return_attn_probs=True
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output,s1,s2 = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, return_attn_probs=True
)
return attn_output
def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q.to(torch.int64),
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class InternLM2CrossAttention(nn.Module):
"""Cross-attention mechanism."""
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
# num heads = 16 num key value heads=4
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
f' and `num_heads`: {self.num_heads}).'
)
# Query projection (for target hidden states)
self.wq = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
# Key-value projection (for encoder hidden states)
self.wkv = nn.Linear(
self.hidden_size, 2 * self.num_key_value_heads * self.head_dim, bias=config.bias
)
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
self._init_rope()
def reuse_self_attention_params(self, self_attn: nn.Module):
"""
从 Self-Attention 模块中复用参数:wo 和拆分后的 wqkv。
Args:
self_attn (nn.Module): 输入的 Self-Attention 模块。
"""
# 复用输出层 wo
self.wo.weight.data = self_attn.wo.weight.data.clone()
if self.config.bias:
self.wo.bias.data = self_attn.wo.bias.data.clone() if self.config.bias else None
# 获取 Self-Attention 中的 wqkv 参数
group_num = self.num_key_value_heads
wqkv_weight = self_attn.wqkv.weight # [num_heads * 3 * head_dim, hidden_size]
chunks=torch.chunk(wqkv_weight,group_num,dim=0)
q_weights_list=[c[:self.num_key_value_groups*self.head_dim,:] for c in chunks]
kv_weights_list=[c[self.num_key_value_groups*self.head_dim:,:] for c in chunks]
q_weights=torch.cat(q_weights_list,dim=0)
kv_weights=torch.cat(kv_weights_list,dim=0)
if self.config.bias:
wqkv_bias = self_attn.wqkv.bias.data if self.config.bias else None
# 计算拆分位置
q_end = self.num_heads * self.head_dim
kv_end = q_end + 2 * self.num_key_value_heads * self.head_dim
# 将 wqkv 的参数拆分为 wq 和 wkv
self.wq.weight.data = q_weights.clone()
if self.config.bias:
raise NotImplementedError()
self.wq.bias.data = wqkv_bias[:q_end].clone()
self.wkv.weight.data = kv_weights.clone()
if self.config.bias:
self.wkv.bias.data = wqkv_bias[q_end:kv_end].clone()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = InternLM2RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.config.max_position_embeddings,
base=self.config.rope_theta,
)
else:
scaling_type = self.config.rope_scaling['type']
scaling_factor = self.config.rope_scaling['factor']
if scaling_type == 'dynamic':
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.config.max_position_embeddings,
base=self.config.rope_theta,
scaling_factor=scaling_factor,
)
elif scaling_type == 'linear':
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.config.max_position_embeddings,
base=self.config.rope_theta,
scaling_factor=scaling_factor,
)
else:
raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# return attn_output, attn_weights, past_key_value
bsz, q_len, _ = hidden_states.size()
src_len = encoder_hidden_states.size(1)
# Project the query from the target hidden states
query_states = self.wq(hidden_states)
# num key value groups =4 head dim=128
query_states=rearrange(query_states,'b q (h gs d) -> b q h gs d', gs=self.num_key_value_groups ,d=self.head_dim,)
# Project the key and value from the encoder hidden states
kv_states = self.wkv(encoder_hidden_states)
kv_states = rearrange(
kv_states, 'b q (h gs d) -> b q h gs d', gs= 2 ,d=self.head_dim,
)
key_states, value_states = kv_states.chunk(2, dim=-2)
key_states=rearrange(key_states,'b q h gs d->b q (h gs) d')
value_states=rearrange(value_states,'b q h gs d->b q (h gs) d')
query_states=rearrange(query_states,'b q h gs d->b q (h gs) d')
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
kv_seq_len = key_states.shape[-2]
q_seq_len = query_states.shape[-2]
cos_q, sin_q = self.rotary_emb(value_states, seq_len=q_seq_len)
cos_k, sin_k = self.rotary_emb(value_states, seq_len=kv_seq_len)
if position_ids is None:
position_ids_q=torch.arange(0,q_seq_len).unsqueeze(0).cuda()
position_ids_k=torch.arange(0,kv_seq_len).unsqueeze(0).cuda()
query_states, key_states = apply_rotary_pos_emb_single(query_states, cos_q, sin_q, position_ids_q),apply_rotary_pos_emb_single(key_states,cos_k,sin_k,position_ids_k)
if past_key_value is not None:
# Reuse k, v from past key-value states
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states=repeat_kv(value_states,self.num_key_value_groups)
# 计算 QK 的缩放点积注意力
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
# 检查注意力权重的大小是否匹配
if attn_weights.size() != (bsz, self.num_heads, q_seq_len, kv_seq_len):
raise ValueError(
f'Attention weights should be of size {(bsz, self.num_heads, q_seq_len, kv_seq_len)}, but is '
f'{attn_weights.size()}'
)
# 应用目标序列和源序列的掩码(如果有)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_seq_len, kv_seq_len):
raise ValueError(
f'Attention mask should be of size {(bsz, 1, q_seq_len, kv_seq_len)}, but is '
f'{attention_mask.size()}'
)
attn_weights = attn_weights + attention_mask
if encoder_attention_mask is not None:
if encoder_attention_mask.size() != (bsz, 1, 1, kv_seq_len):
raise ValueError(
f'Encoder attention mask should be of size {(bsz, 1, 1, kv_seq_len)}, but is '
f'{encoder_attention_mask.size()}'
)
attn_weights = attn_weights + encoder_attention_mask
# 对注意力权重进行 softmax,并投射回原数据类型
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
# 计算注意力输出 (b, num_heads, q_len, head_dim)
attn_output = torch.matmul(attn_weights, value_states)
# 检查输出形状是否正确
if attn_output.size() != (bsz, self.num_heads, q_seq_len, self.head_dim):
raise ValueError(
f'Attention output should be of size {(bsz, self.num_heads, q_seq_len, self.head_dim)}, but is '
f'{attn_output.size()}'
)
# 转置并调整输出形状为 (bsz, q_len, hidden_size)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_seq_len, self.hidden_size)
# 通过线性层输出
attn_output = self.wo(attn_output)
# 如果不需要输出注意力权重,则将其置为 None
if not output_attentions:
attn_weights = None
# 返回注意力输出、注意力权重和缓存的键值对
return attn_output
class InternLM2CrossAttentionForPackedTraining(InternLM2FlashAttention2):
def __init__(self, config: InternLM2Config):
super().__init__(config)
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} '
f'and `num_heads`: {self.num_heads}).'
)
# 使用两个独立的线性层:wq 和 wkv
self.wq = nn.Linear(
self.hidden_size, # 输入为 query 的 hidden_size
self.num_heads * self.head_dim, # 输出为 num_heads * head_dim
bias=config.bias,
)
self.wkv = nn.Linear(
self.hidden_size, # 输入为 key-value 的 hidden_size
2 * self.num_key_value_heads * self.head_dim, # 输出为 2 * key_value_heads * head_dim
bias=config.bias,
)
# 输出线性层
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
# 初始化 Rotary Positional Embeddings (RoPE)
self._init_rope()
def reuse_self_attention_params(self, self_attn: nn.Module):
"""
从 Self-Attention 模块中复用参数:wo 和拆分后的 wqkv。
Args:
self_attn (nn.Module): 输入的 Self-Attention 模块。
"""
# 复用输出层 wo
self.wo.weight.data = self_attn.wo.weight.data.clone()
if self.config.bias:
self.wo.bias.data = self_attn.wo.bias.data.clone() if self.config.bias else None
# 获取 Self-Attention 中的 wqkv 参数
group_num = self.num_key_value_heads
wqkv_weight = self_attn.wqkv.weight # [num_heads * 3 * head_dim, hidden_size]
chunks=torch.chunk(wqkv_weight,group_num,dim=0)
q_weights_list=[c[:self.num_key_value_groups*self.head_dim,:] for c in chunks]
kv_weights_list=[c[self.num_key_value_groups*self.head_dim:,:] for c in chunks]
q_weights=torch.cat(q_weights_list,dim=0)
kv_weights=torch.cat(kv_weights_list,dim=0)
if self.config.bias:
wqkv_bias = self_attn.wqkv.bias.data if self.config.bias else None
# 计算拆分位置
q_end = self.num_heads * self.head_dim
kv_end = q_end + 2 * self.num_key_value_heads * self.head_dim
# 将 wqkv 的参数拆分为 wq 和 wkv
self.wq.weight.data = q_weights.clone()
if self.config.bias:
raise NotImplementedError()
self.wq.bias.data = wqkv_bias[:q_end].clone()
self.wkv.weight.data = kv_weights.clone()
if self.config.bias:
self.wkv.bias.data = wqkv_bias[q_end:kv_end].clone()
def forward(
self,
query_seq, key_value_seq,
cu_seqlens_q, cu_seqlens_k,
position_ids: Optional[Tuple] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# InternLM2FlashAttention2 attention does not support output_attentions
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
'Please make sure use `attention_mask` instead.`'
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop('padding_mask')
output_attentions = False
bsz, q_len, _ = query_seq.size()
query_states = self.wq(query_seq)
key_value_states = self.wkv(key_value_seq)
query_states = rearrange(
query_states,
'b q (h gs d) -> b q h gs d',
gs=self.num_key_value_groups,
d=self.head_dim,
)
query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
key_value_states=rearrange(
key_value_states,
'b q (h gs d) -> b q h gs d',
gs=2,
d=self.head_dim
)
key_states = key_value_states[..., 0, :]
value_states = key_value_states[..., 1, :]
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
q_position_ids, kv_position_ids = position_ids
kv_seq_len = kv_position_ids.max()+1
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
q_seq_len = q_position_ids.max()+1
if past_key_value is not None:
q_seq_len += past_key_value[0].shape[-2]
# method B
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
# -------------------------------------------------
# method C
cos, sin = self.rotary_emb(value_states, seq_len=q_seq_len)
# ---------------------------------------------------
# q_cos, q_sin = self.rotary_emb(query_states, seq_len=q_seq_len)
if kv_position_ids[0][0]!=0:
kv_position_ids=kv_position_ids-kv_position_ids[0][0]
query_states, key_states = apply_rotary_pos_emb_single(query_states, cos, sin, q_position_ids), apply_rotary_pos_emb_single(key_states, cos, sin, kv_position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# [1, 5, 17, 26, 30]
# -16
# torch.clamp(cu_seqlens_q-16, min=0, max=7)
# [16, 16, 17, 23]
# [0, 1, 7]
# [0, 0, 1, 7, 7]
attn_output = self._flash_cross_attention_forward(
query_states, key_states, value_states, cu_seqlens_q, cu_seqlens_k
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.wo(attn_output)
if not output_attentions:
attn_weights = None
return attn_output
def _flash_cross_attention_forward(
self, query_states, key_states, value_states,
cu_seqlens_q, cu_seqlens_k, dropout=0.0, softmax_scale=None
):
"""
Computes cross attention using Flash Attention.
Args:
query_states (`torch.Tensor`):
Input query states (shape: [1, total_q, nheads, headdim]).
key_states (`torch.Tensor`):
Input key states (shape: [1, total_k, nheads, headdim]).
value_states (`torch.Tensor`):
Input value states (shape: [1, total_k, nheads, headdim]).
cu_seqlens_q (`torch.Tensor`):
Cumulative sequence lengths of query sequences in the batch (shape: [batch_size + 1]).
cu_seqlens_k (`torch.Tensor`):
Cumulative sequence lengths of key/value sequences in the batch (shape: [batch_size + 1]).
dropout (`float`, *optional*):
Attention dropout.
softmax_scale (`float`, *optional*):
Scaling factor for QK^T before softmax (default: 1 / sqrt(headdim)).
"""
# Remove the batch dimension (squeeze(0)) as Flash Attention expects flattened tensors.
query_states = query_states.squeeze(0) # (total_q, nheads, headdim)
key_states = key_states.squeeze(0) # (total_k, nheads, headdim)
value_states = value_states.squeeze(0) # (total_k, nheads, headdim)
# Calculate the max sequence lengths for query and key sequences.
cu_seqlens_q=cu_seqlens_q.squeeze(0)
cu_seqlens_k=cu_seqlens_k.squeeze(0)
with torch.no_grad():
max_seqlen_q = max([
cu_seqlens_q[idx + 1] - cu_seqlens_q[idx]
for idx in range(cu_seqlens_q.size(0) - 1)
]).item()
max_seqlen_k = max([
cu_seqlens_k[idx + 1] - cu_seqlens_k[idx]
for idx in range(cu_seqlens_k.size(0) - 1)
]).item()
# Set causal=False for cross-attention (unless you need specific behavior).
causal = self.is_causal
# method B method C
assert causal==False
# Perform Flash Attention.
attn_output = flash_attn_varlen_func(
q=query_states,
k=key_states,
v=value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
# Check for NaNs in the attention output.
if torch.isnan(attn_output).any():
raise ValueError("Attention output contains NaN values")
# Add back the batch dimension (unsqueeze(0)).
query_states = query_states.unsqueeze(0)
key_states = key_states.unsqueeze(0)
value_states = value_states.unsqueeze(0)
return attn_output
INTERNLM2_ATTENTION_CLASSES = {
'eager': InternLM2Attention,
'flash_attention_2': InternLM2FlashAttention2,
}
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
class InternLM2DecoderLayer(nn.Module):
def __init__(self, config: InternLM2Config):
super().__init__()
self.hidden_size = config.hidden_size
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
self.feed_forward = InternLM2MLP(config)
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.config=config
def init_interactions(self,compress_seq=False,fuse_method='add', compress_method='avg'):
self.attention.init_interactions()
if compress_seq:
self.compress_seq=True
self.interaction=INTERNLM2_ATTENTION_CLASSES[self.config.attn_implementation](config=self.config)
self.layer_scale=LayerScale(self.config.hidden_size,init_values=1e-3)
self.sigmoid_layer_scale = Sigmoid(self.config.hidden_size)
# self.layer_scale.gamma.requires_grad=False
self.fuse_method=fuse_method
if self.fuse_method=='cross-attn':
self.fuse_layer=InternLM2CrossAttentionForPackedTraining(self.config)
self.fuse_layer.reuse_self_attention_params(self.attention)
elif self.fuse_method=='simple-cross-attn':
self.fuse_layer=InternLM2CrossAttention(self.config)
self.fuse_layer.reuse_self_attention_params(self.attention)
elif self.fuse_method=='add':
self.fuse_layer=None
else:
raise NotImplementedError()
self.compress_method=compress_method
if compress_method=='attention':
self.pooling_layer=AttentionPooling(self.config.hidden_size, FINAL_SIZE)
elif compress_method=='topk':
self.pooling_layer=TopKPooling(self.config.hidden_size, FINAL_SIZE)
elif compress_method=='avg':
self.pooling_layer=None
else:
raise NotImplementedError()
# initialize
for layer_param, interaction_param in zip(self.attention.parameters(), self.interaction.parameters()):
interaction_param.data.copy_(layer_param.data)
else:
self.compress_seq=False
# print("succesfully inited?",all(torch.equal(p1, p2) for p1, p2 in zip(self.attention.parameters(), self.interaction.parameters())))
def fuse(self,compressed_data,hidden_states,inner_idx=0,chunk_num=None,chunk_size=100,cu_seqlens_q=None, cu_seqlens_k=None,method='add',position_ids=None):
if method=='add':
# return torch.sum(compressed_data[:,:inner_idx*chunk_size,:])+hidden_states
return self.layer_scale(torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1))+hidden_states
# return 0*torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1).unsqueeze(1)+hidden_states
elif method=='cross-attn':
cu_seqlens_k_list=chunk_with_boundaries(cu_seqlens_k[0][-1],cu_seqlens_k,chunk_num)
if inner_idx==0:
return hidden_states+0.0*self.fuse_layer(hidden_states,compressed_data[:,inner_idx*chunk_size:(inner_idx+1)*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,inner_idx*chunk_size:(inner_idx+1)*chunk_size]))
else:
return self.layer_scale(self.fuse_layer(hidden_states,compressed_data[:,(inner_idx-1)*chunk_size:inner_idx*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,(inner_idx-1)*chunk_size:inner_idx*chunk_size])))+hidden_states
else:
raise ValueError(f"Unknown method: {method}")
def compress2(self, hidden_states, pos_ids, method='avg', final_size=FINAL_SIZE):
if method == 'avg':
B, N, C = hidden_states.shape
# 每组的步长
step_size = N // final_size # 计算每组的元素数量
# 将 hidden_states 沿着 N 维度均匀划分为 100 组,并在每组内求平均
averaged_groups = [
hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True)
for i in range(final_size)
]
# 对 pos_ids 进行处理:可以使用中位数来代替浮点平均
pos_ids_groups = [
pos_ids[:, i * step_size: (i + 1) * step_size].median(dim=1, keepdim=True).values
for i in range(final_size)
]
# 拼接所有组的结果
result = torch.cat(averaged_groups, dim=1)
pos_ids_res = torch.cat(pos_ids_groups, dim=1)
return result, pos_ids_res
def compress(self,hidden_states,method='avg',final_size=FINAL_SIZE):
if method=='avg':
B, N, C = hidden_states.shape
# 每组的步长
step_size = N // final_size # 计算每组的元素数量
# 将张量沿着 N 维度均匀划分为 100 组,并在每组内求平均
averaged_groups = [
hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True)
for i in range(final_size)
]
# 拼接所有组的结果,得到 (B, 100, C)
result = torch.cat(averaged_groups, dim=1)
return result
elif method=='attention':
return self.pooling_layer(hidden_states)
elif method=='topk':
return self.pooling_layer(hidden_states)
else:
raise ValueError(f"Unknown method: {method}")
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
origin_cu_seq_lens: Optional[torch.Tensor] = None,
fuse_only: Optional[torch.Tensor] = False,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
selected: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. '
'Please make sure use `attention_mask` instead.`'
)
residual = hidden_states
hidden_states = self.attention_norm(hidden_states)
if not hasattr(self,'compress_seq'):
self.compress_seq=False
if self.compress_seq:
if fuse_only:
_, length, channels= hidden_states.shape
PADDING_LENGTH=8192
# padding hidden states to b,padding length, c
padding_size = PADDING_LENGTH - length
# 创建填充的张量
pad_hidden_states = torch.zeros((hidden_states.size(0), padding_size, channels), device=hidden_states.device).to(hidden_states.dtype)
# 将原始的 hidden_states 复制到填充的张量中
pad_hidden_states = torch.cat((hidden_states, pad_hidden_states), dim=1)
pad_all_hiddenstates=GatherLayer.apply(pad_hidden_states)
length_tensor = torch.tensor([length], dtype=torch.int).cuda()
origin_length_tensor=GatherLayer.apply(length_tensor)
# method C----------------------------------------
if inner_idx>0:
prev_seq=pad_all_hiddenstates[:inner_idx]
prev_len=origin_length_tensor[:inner_idx]
B = prev_seq.size(1) # batch size
C = prev_seq.size(3) # channels
# 创建一个列表来存储每个卡上去除填充后的 hidden states
unpad_hidden_states_list = []
# 遍历每个进程的 hidden states
for i in range(prev_len.size(0)): # num_processes
# 从 prev_seq 中提取有效的 hidden states
valid_hidden_states = prev_seq[i, :B, :prev_len[i], :] # 取前 prev_len[i] 个时间步
unpad_hidden_states_list.append(valid_hidden_states)
prev_hidden_states = torch.cat(unpad_hidden_states_list, dim=1)
else:
assert dist.get_rank()==0
prev_seq=pad_all_hiddenstates[:1]
prev_len=origin_length_tensor[:1]
B = prev_seq.size(1) # batch size
C = prev_seq.size(3) # channels
# 创建一个列表来存储每个卡上去除填充后的 hidden states
unpad_hidden_states_list = []
# 遍历每个进程的 hidden states
for i in range(prev_len.size(0)): # num_processes
# 从 prev_seq 中提取有效的 hidden states
valid_hidden_states = prev_seq[i, :B, :prev_len[i], :] # 取前 prev_len[i] 个时间步
unpad_hidden_states_list.append(valid_hidden_states)
prev_hidden_states = torch.cat(unpad_hidden_states_list, dim=1)
# since batch size=1, only 1 sample packed
# TODO: make compatible for other cases
prev_position_id = torch.arange(0,prev_hidden_states.size(1)).unsqueeze(0).cuda()
prev_hidden_states,prev_position_id=self.compress2(prev_hidden_states,prev_position_id)
cu_seqlens_k = torch.tensor([[0,prev_hidden_states.size(1)]],dtype=attention_mask.dtype,device=attention_mask.device)
right_bound = prev_len.sum().item()
left_bound = right_bound-length_tensor.item()
position_ids = torch.arange(left_bound,right_bound).unsqueeze(0).cuda()
# ------------------------------------------------
else:
_, length, _ = hidden_states.shape
length_tensor = torch.tensor([length], dtype=torch.int).cuda()
compressed_chunk = self.compress(hidden_states,method=self.compress_method)
B, N, C = compressed_chunk.shape
compressed_data=GatherLayer.apply(compressed_chunk)
origin_length_tensor=GatherLayer.apply(length_tensor)
origin_length=torch.sum(origin_length_tensor,dim=0).unsqueeze(1)#shape B,1
pn_size = compressed_data.size(0) * compressed_data.size(2)
compressed_data = compressed_data.reshape(-1, pn_size, compressed_data.size(3))
new_length=compressed_data.shape[1]
new_cu_seq_lens=origin_cu_seq_lens*new_length//origin_length
new_cu_seq_lens=new_cu_seq_lens.to(torch.int32).to(hidden_states.device)
compressed_pos_id=torch.arange(0,compressed_data.shape[1]).unsqueeze(0).repeat(B,1).cuda()
compressed_data = self.interaction(compressed_data, new_cu_seq_lens, compressed_pos_id, None, output_attentions, use_cache)[0] # 1, 4*100, E
chunk_num=compressed_data.size(1)//N
# this_fuse = partial(self.fuse, idx=idx,inner_idx=inner_idx,chunk_num=chunk_num,chunk_size=N, cu_seqlens_q=attention_mask, cu_seqlens_k=new_cu_seq_lens, method=self.fuse_method,fuse_layer=self.fuse_layers[idx],position_ids=(position_ids,compressed_pos_id))
# hidden_states=self.fuse(idx, compressed_data,hidden_states,inner_idx,chunk_num,N,attention_mask, new_cu_seq_lens, method=self.fuse_method,fuse_layer=self.fuse_layers[idx],position_ids=(position_ids,compressed_pos_id))
hidden_states, self_attn_weights, present_key_value = self.attention(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
selected=selected,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.ffn_norm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
InternLM2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`InternLM2Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
@add_start_docstrings(
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
InternLM2_START_DOCSTRING,
)
class InternLM2PreTrainedModel(PreTrainedModel):
config_class = InternLM2Config
base_model_prefix = 'model'
supports_gradient_checkpointing = True
_no_split_modules = ['InternLM2DecoderLayer']
_skip_keys_device_placement = 'past_key_values'
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
InternLM2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Modified from transformers.model.llama.modeling_llama.LlamaModel
@add_start_docstrings(
'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
InternLM2_START_DOCSTRING,
)
class GatherLayer(torch.autograd.Function):
"""Gather tensors from all process, supporting backward propagation."""
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
output = [torch.zeros_like(input) for _ in range(dist.get_world_size(local_group))]
dist.all_gather(output, input, group=local_group)
return torch.stack(output, 0)
@staticmethod
def backward(ctx, grads):
(input,) = ctx.saved_tensors
dist.all_reduce(grads, group=local_group)
grad_out = torch.zeros_like(input)
grad_out[:] = grads[dist.get_rank(local_group)]
return grad_out
class InternLM2Model(InternLM2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
Args:
config: InternLM2Config
"""
_auto_class = 'AutoModel'
def __init__(self, config: InternLM2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.config = config
if not has_flash_attn:
self.config.attn_implementation = 'eager'
print('Warning: Flash attention is not available, using eager attention instead.')
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# global attn_type
# attn_type = None
self.post_init()
def init_interactions(self,compress_seq, fuse_method='add', compress_method='avg'):
# lr=0.0 跑10个iter,save ckpt,看权重
for layer in self.layers:
layer.init_interactions(compress_seq,fuse_method,compress_method)
def get_input_embeddings(self):
return self.tok_embeddings
def set_input_embeddings(self, value):
self.tok_embeddings = value
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
compress_seq: Optional[bool] = False,
group_list: Optional[List] = None,
chunk_num: Optional[int] = None,
origin_cu_seq_lens: Optional[torch.tensor] = None,
interaction: Optional[bool] = True,
selected: Optional[torch.tensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
# origin_cu_seq_lens: B,N
global local_group
if group_list is not None:
for group_idx,group in enumerate(group_list):
if type(group)==torch.distributed.distributed_c10d.ProcessGroup:
# assert type(group)==torch.distributed.distributed_c10d.ProcessGroup
break
global inner_idx
inner_idx = dist.get_rank(group)
local_group=group
else:
local_group=None
inner_idx = dist.get_rank()
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.attn_implementation == 'flash_attention_2':
_import_flash_attn()
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds')
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.tok_embeddings(input_ids)
if self.config.attn_implementation == 'flash_attention_2':
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
# in which process group
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
fuse_only = not interaction
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
origin_cu_seq_lens,
fuse_only,
None,
selected,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
origin_cu_seq_lens=origin_cu_seq_lens,
fuse_only=fuse_only,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
selected=selected,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def fuse(self,idx ,compressed_data,hidden_states,inner_idx=0,chunk_num=None,chunk_size=100,cu_seqlens_q=None, cu_seqlens_k=None,method='add',fuse_layer=None,position_ids=None):
if method=='add':
# return torch.sum(compressed_data[:,:inner_idx*chunk_size,:])+hidden_states
return self.layer_scale[idx](torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1))+hidden_states
# return 0*torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1).unsqueeze(1)+hidden_states
elif method=='cross-attn':
cu_seqlens_k_list=chunk_with_boundaries(cu_seqlens_k[0][-1],cu_seqlens_k,chunk_num)
if inner_idx==0:
return hidden_states+0.0*fuse_layer(hidden_states,compressed_data[:,inner_idx*chunk_size:(inner_idx+1)*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,inner_idx*chunk_size:(inner_idx+1)*chunk_size]))
else:
return self.layer_scale[idx](fuse_layer(hidden_states,compressed_data[:,(inner_idx-1)*chunk_size:inner_idx*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,(inner_idx-1)*chunk_size:inner_idx*chunk_size])))+hidden_states
else:
raise ValueError(f"Unknown method: {method}")
def compress(self,idx,hidden_states, method='avg',final_size=FINAL_SIZE):
if method=='avg':
B, N, C = hidden_states.shape
# 每组的步长
step_size = N // final_size # 计算每组的元素数量
# 将张量沿着 N 维度均匀划分为 100 组,并在每组内求平均
averaged_groups = [
hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True)
for i in range(final_size)
]
# 拼接所有组的结果,得到 (B, 100, C)
result = torch.cat(averaged_groups, dim=1)
return result
elif method=='attention':
return self.pooling_layers[idx](hidden_states)
elif method=='topk':
return self.pooling_layers[idx](hidden_states)
else:
raise ValueError(f"Unknown method: {method}")
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
_auto_class = 'AutoModelForCausalLM'
_tied_weights_keys = ['output.weight']
def __init__(self, config):
super().__init__(config)
self.model = InternLM2Model(config)
self.vocab_size = config.vocab_size
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.tok_embeddings
def set_input_embeddings(self, value):
self.model.tok_embeddings = value
def get_output_embeddings(self):
return self.output
def set_output_embeddings(self, new_embeddings):
self.output = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
compress_seq: Optional[bool] = False,
group_list: Optional[List] = None,
chunk_num: Optional[int] = 1,
origin_cu_seq_lens: Optional[torch.tensor] = None,
interaction: Optional[bool] = True,
selected: Optional[torch.tensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
>>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
compress_seq=compress_seq,
group_list=group_list,
chunk_num=chunk_num,
origin_cu_seq_lens=origin_cu_seq_lens,
interaction=interaction,
selected=selected,
)
hidden_states = outputs[0]
logits = self.output(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
device = input_ids.device if input_ids is not None else inputs_embeds.device
output = CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
output['logits'] = output['logits'].to(device)
return output
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
elif position_ids is not None:
if self.rope_pos_id_version!='default' and past_key_values is not None:
position_ids=(position_ids[:,-1]+attention_mask[:,position_ids.shape[1]:].sum(dim=1)).unsqueeze(1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
model_inputs.update(
{
'position_ids': position_ids,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
if tokenizer.add_bos_token:
prompt = ''
else:
prompt = tokenizer.bos_token
if meta_instruction:
prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
for record in history:
prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
return tokenizer([prompt], return_tensors='pt')
@torch.no_grad()
def chat(
self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
streamer: Optional[BaseStreamer] = None,
max_new_tokens: int = 1024,
do_sample: bool = True,
temperature: float = 0.8,
top_p: float = 0.8,
meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
'- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
'- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
**kwargs,
):
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
# also add end-of-assistant token in eos token id to avoid unnecessary generation
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
outputs = self.generate(
**inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
eos_token_id=eos_token_id,
**kwargs,
)
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
response = tokenizer.decode(outputs, skip_special_tokens=True)
response = response.split('<|im_end|>')[0]
history = history + [(query, response)]
return response, history
@torch.no_grad()
def stream_chat(
self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
max_new_tokens: int = 1024,
do_sample: bool = True,
temperature: float = 0.8,
top_p: float = 0.8,
**kwargs,
):
"""
Return a generator in format: (response, history)
Eg.
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
"""
if BaseStreamer is None:
raise ModuleNotFoundError(
'The version of `transformers` is too low. Please make sure '
'that you have installed `transformers>=4.28.0`.'
)
response_queue = queue.Queue(maxsize=20)
class ChatStreamer(BaseStreamer):
def __init__(self, tokenizer) -> None:
super().__init__()
self.tokenizer = tokenizer
self.queue = response_queue
self.query = query
self.history = history
self.response = ''
self.cache = []
self.received_inputs = False
self.queue.put((self.response, history + [(self.query, self.response)]))
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError('ChatStreamer only supports batch size 1')
elif len(value.shape) > 1:
value = value[0]
if not self.received_inputs:
# The first received value is input_ids, ignore here
self.received_inputs = True
return
self.cache.extend(value.tolist())
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
if token.strip() != '<|im_end|>':
self.response = self.response + token
history = self.history + [(self.query, self.response)]
self.queue.put((self.response, history))
self.cache = []
else:
self.end()
def end(self):
self.queue.put(None)
def stream_producer():
return self.chat(
tokenizer=tokenizer,
query=query,
streamer=ChatStreamer(tokenizer=tokenizer),
history=history,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
**kwargs,
)
def consumer():
producer = threading.Thread(target=stream_producer)
producer.start()
while True:
res = response_queue.get()
if res is None:
return
yield res
return consumer()
# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
@add_start_docstrings(
"""
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
as other causal models (e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
InternLM2_START_DOCSTRING,
)
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = InternLM2Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.tok_embeddings
def set_input_embeddings(self, value):
self.model.tok_embeddings = value
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
logits.device
)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = 'single_label_classification'
else:
self.config.problem_type = 'multi_label_classification'
if self.config.problem_type == 'regression':
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == 'single_label_classification':
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == 'multi_label_classification':
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|