Transformers
Safetensors
English
V2PE
Inference Endpoints
File size: 112,860 Bytes
81d64a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch InternLM2 model."""
import math
import queue
import threading
import warnings
from typing import List, Optional, Tuple, Union, Callable
from internvl.model.internlm2.configuration_internlm2 import InternLM2Config

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torch.distributed as dist
from einops import rearrange
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
                                           CausalLMOutputWithPast,
                                           SequenceClassifierOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (add_start_docstrings,
                                add_start_docstrings_to_model_forward, logging,
                                replace_return_docstrings)
from internvl.train.compress_seq_trainer import chunk_with_boundaries
try:
    from transformers.generation.streamers import BaseStreamer
except:  # noqa # pylint: disable=bare-except
    BaseStreamer = None

from .configuration_internlm2 import InternLM2Config

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = 'InternLM2Config'
FINAL_SIZE=100
flash_attn_func, flash_attn_varlen_func = None, None
pad_input, index_first_axis, unpad_input = None, None, None
try:
    from flash_attn import flash_attn_func as _flash_attn_func
    from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis as _index_first_axis
    from flash_attn.bert_padding import pad_input as _pad_input
    from flash_attn.bert_padding import unpad_input as _unpad_input

    flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
    pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
    has_flash_attn = True
except:
    has_flash_attn = False
class AttentionPooling(nn.Module):
    def __init__(self, input_dim, n_prime):
        """
        input_dim: 输入特征的维度 C
        n_prime: 希望保留的时间步数量 N'
        """
        super(AttentionPooling, self).__init__()
        self.query = nn.Linear(input_dim, n_prime)  # 输出 N' 个注意力分数

    def forward(self, x):
        """
        x: 输入 Tensor,形状为 (batch_size, seq_len, input_dim)
        返回: (batch_size, n_prime, input_dim)
        """
        # 计算 attention scores: (batch_size, seq_len, n_prime)
        attention_scores = self.query(x)
        
        # 归一化每个样本内的 seq_len 维度 (softmax over seq_len)
        attention_weights = F.softmax(attention_scores, dim=1)  # (batch_size, seq_len, n_prime)

        # 对输入加权求和,生成 (batch_size, n_prime, input_dim)
        output = torch.einsum('bni,bnd->bid', attention_weights, x)

        return output
class TopKPooling(nn.Module):
    def __init__(self, input_dim, n_prime):
        """
        input_dim: 输入特征的维度 C
        n_prime: 希望保留的时间步数量 N'
        """
        super(TopKPooling, self).__init__()
        self.query = nn.Linear(input_dim, 1)  # 输出单个注意力分数用于排序
        self.n_prime = n_prime  # 希望保留的时间步数

    def forward(self, x):
        """
        x: 输入 Tensor,形状为 (batch_size, seq_len, input_dim)
        返回: (batch_size, n_prime, input_dim)
        """
        # 计算 attention scores: (batch_size, seq_len, 1)
        attention_scores = self.query(x).squeeze(-1)  # (batch_size, seq_len)

        # 获取每个样本中注意力分数最高的 n_prime 个时间步的索引
        topk_scores, topk_indices = torch.topk(attention_scores, self.n_prime, dim=1)  # (batch_size, n_prime)

        # 根据 topk_indices 从输入 x 中选择相应的时间步
        batch_indices = torch.arange(x.size(0)).unsqueeze(-1).expand(-1, self.n_prime)  # (batch_size, n_prime)
        selected_x = x[batch_indices, topk_indices]  # (batch_size, n_prime, input_dim)

        # 使用 softmax 归一化 top-k 分数
        attention_weights = F.softmax(topk_scores, dim=1).unsqueeze(-1)  # (batch_size, n_prime, 1)

        # 加权求和,生成输出: (batch_size, n_prime, input_dim)
        output = selected_x * attention_weights  # (batch_size, n_prime, input_dim)

        return output
class LayerScale(nn.Module):
    def __init__(
            self,
            dim: int,
            init_values: float = 1e-5,
            inplace: bool = False,
    ) -> None:
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x.mul_(self.gamma) if self.inplace else x * self.gamma
class Sigmoid(nn.Module):
    def __init__(
            self,
            dim: int,
            init_values: float = 0.0,
            inplace: bool = False,
    ) -> None:
        super().__init__()
        self.inplace = inplace
        self.gate = nn.Parameter(init_values * torch.ones(dim))
    def forward(self, x1,x2):
        return x1*torch.sigmoid(self.gate)+x2*(1-torch.sigmoid(self.gate))
def _import_flash_attn():
    global flash_attn_func, flash_attn_varlen_func
    global pad_input, index_first_axis, unpad_input
    try:
        from flash_attn import flash_attn_func as _flash_attn_func
        from flash_attn import \
            flash_attn_varlen_func as _flash_attn_varlen_func
        from flash_attn.bert_padding import \
            index_first_axis as _index_first_axis
        from flash_attn.bert_padding import pad_input as _pad_input
        from flash_attn.bert_padding import unpad_input as _unpad_input
        flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
        pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
    except ImportError:
        raise ImportError('flash_attn is not installed.')


# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
        input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
class InternLM2RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        InternLM2RMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


try:
    from functools import partial

    from apex.normalization import FusedRMSNorm
    InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6)   # noqa
    print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
except ImportError:
    # using the normal LlamaRMSNorm
    pass
except Exception:
    print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
    pass


# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
class InternLM2RotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.inv_freq = None
        # inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        # self.register_buffer('inv_freq', inv_freq, persistent=False)

        self.max_seq_len_cached = -1 
        # Build here to make `torch.jit.trace` work.
        # self._set_cos_sin_cache(
        #     seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        # )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        if self.inv_freq is None:
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
            del self.inv_freq
            self.register_buffer('inv_freq', inv_freq, persistent=False)


        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)

        # freqs = torch.einsum('i,j->ij', t, self.inv_freq)
        freqs = torch.outer(t, self.inv_freq.to(device=t.device))

        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
        self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        # if self.max_seq_len_cached == -1:
        #     self._set_cos_sin_cache(seq_len=self.max_position_embeddings, device=x.device, dtype=x.dtype)

        if seq_len > self.max_seq_len_cached:
            # print(x.dtype)
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )
def scale_position_ids(position_ids, scaling_factor,selected):
    # 去掉批次维度
    position_ids = position_ids.squeeze(0)
    
    # Step 1: 计算是否等差为 1
    diff = torch.diff(position_ids)
    is_arithmetic = (diff == 1)
    
    # 如果没有等差为 1 的部分,直接返回
    if is_arithmetic.sum() == 0:
        return position_ids.unsqueeze(0)
    
    # Step 2: 标记 chunks
    # 找出每个 chunk 的起始点
    changes = torch.where(is_arithmetic[:-1] != is_arithmetic[1:])[0] + 1
    chunks_indices = torch.cat([torch.tensor([0]).to(position_ids.device), changes, torch.tensor([len(position_ids)]).to(position_ids.device)])
    
    # Step 3: 按 chunk 进行缩放
    scaled_positions = torch.empty_like(position_ids, dtype=torch.float32)
    last_scaled_value = None
    last_value = None
    
    for i in range(len(chunks_indices) - 1):
        start, end = chunks_indices[i], chunks_indices[i + 1]
        chunk = position_ids[start:end]
        is_arith = is_arithmetic[start]
        
        if is_arith:  # 如果是等差数列
            if last_scaled_value is not None and chunk[0]!=0:
                # 使用最后一个缩放值和最后一个原始值计算偏移
                # chunk*scaled_factor+bias
                # chunk[0]*scaled_factor+bias=ceil(last_scaled_value)
                scaled_chunk = chunk * scaling_factor - chunk[0]*scaling_factor+torch.ceil(last_scaled_value+chunk[0]-last_value)
            else:
                scaled_chunk = chunk * scaling_factor
            last_scaled_value = scaled_chunk[-1]
            last_value = chunk[-1]
        else:  # 非等差数列,保持原始间距
            if last_scaled_value is not None and chunk[0]!=0:
                # chunk+bias
                # chunk[0]+bias=torch.ceil(last_scaled_value)
                offset = torch.ceil(last_scaled_value+scaling_factor)  -chunk[0]
                scaled_chunk = offset + (chunk)
            else:
                scaled_chunk = chunk
            last_scaled_value = scaled_chunk[-1]
            last_value = chunk[-1]
        
        scaled_positions[start:end] = scaled_chunk
    
    return scaled_positions.unsqueeze(0)
class InternLM2newRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None,scaling_factor=1.0,scale_img=False):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.inv_freq = None
        self.scaling_factor=scaling_factor
        self.scale_img=scale_img
        # inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
        # self.register_buffer('inv_freq', inv_freq, persistent=False)

        self.max_seq_len_cached = -1 
        # Build here to make `torch.jit.trace` work.
        # self._set_cos_sin_cache(
        #     seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        # )

    def _set_cos_sin_cache(self, pos_id, device, dtype,selected):
        if self.inv_freq is None:
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
            del self.inv_freq
            self.register_buffer('inv_freq', inv_freq, persistent=False)
        # freqs = torch.einsum('i,j->ij', t, self.inv_freq)
        if self.scaling_factor!=1.0:
            if self.scale_img:
                pos_id=pos_id*self.scaling_factor
            else:
                pos_id=scale_position_ids(pos_id,self.scaling_factor,selected)
        pos_id=pos_id.squeeze(0)
        freqs = torch.outer(pos_id, self.inv_freq.to(device=pos_id.device))

        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
        self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)

    def forward(self, x, global_posid=None,selected=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        self._set_cos_sin_cache(pos_id=global_posid, device=x.device, dtype=x.dtype,selected=selected)

        return (
            self.cos_cached[:].to(dtype=x.dtype),
            self.sin_cached[:].to(dtype=x.dtype),
        )

# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
    """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        if self.inv_freq is None:
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
            del self.inv_freq
            self.register_buffer('inv_freq', inv_freq, persistent=False)
        
        self.max_seq_len_cached = seq_len
        t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)

        t = t / self.scaling_factor
        # print(t, self.scaling_factor)
        # print(t.dtype)

        # freqs = torch.einsum('i,j->ij', t, self.inv_freq)
        freqs = torch.outer(t, self.inv_freq.to(device=t.device))
        # print(freqs)

        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
        self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)


# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
    """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
    Credits to the Reddit users /u/bloc97 and /u/emozilla.
    """

    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        self.scaling_factor = scaling_factor
        super().__init__(dim, max_position_embeddings, base, device)

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        if self.inv_freq is None:
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
            del self.inv_freq
            self.register_buffer('inv_freq', inv_freq, persistent=False)


        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                    (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
            self.register_buffer('inv_freq', inv_freq, persistent=False)

        t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)

        # freqs = torch.einsum('i,j->ij', t, self.inv_freq)
        freqs = torch.outer(t, self.inv_freq.to(device=t.device))
        
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
        self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)


class InternLM2RotaryEmbedding2D(nn.Module):
    def __init__(self, dim, max_position_embeddings=16, base=100, device=None):
        """
        For image of 16x16 tokens, only 16x16 position embeddings are needed
        Base is set to 100, distinguishing from the global implementation, smaller base is used for fewer max tokens
        Modify if needed
        """
        super().__init__()
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        
        theta = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
        x = torch.arange(max_position_embeddings, device=device).to(dtype=theta.dtype)
        y = torch.arange(max_position_embeddings, device=device).to(dtype=theta.dtype)
        
        freqs_x = torch.outer(x, theta[0::2].to(device=x.device))
        freqs_y = torch.outer(y, theta[1::2].to(device=y.device))
        
        freqs_x = torch.cat((freqs_x, freqs_x), dim=-1)
        freqs_y = torch.cat((freqs_y, freqs_y), dim=-1)

        freqs = torch.zeros(max_position_embeddings, max_position_embeddings, self.dim, device=device, dtype=torch.float32)
        freqs[..., 0::2] = freqs_x[:, None, :]
        freqs[..., 1::2] = freqs_y[None, :, :]
        
        self.cos = freqs.cos()
        self.sin = freqs.sin()
        
    def forward(self, x: torch.Tensor, h: int, w: int):
        """
        h and w are shape of image
        shape of x does not matter since only dtype is used
        """
        return (
            self.cos[:h, :w].to(dtype=x.dtype),
            self.sin[:h, :w].to(dtype=x.dtype),
        )


# Copied from transformers.model.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)



# Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb; float 
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors."""
    cos = cos[position_ids].unsqueeze(unsqueeze_dim).float()
    sin = sin[position_ids].unsqueeze(unsqueeze_dim).float()
    q_dtype, k_dtype = q.dtype, k.dtype
    q, k = q.float(), k.float()
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed.to(dtype=q_dtype), k_embed.to(dtype=k_dtype)
def apply_rotary_pos_emb_single(states, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the states tensors."""
    cos = cos[position_ids].unsqueeze(unsqueeze_dim).float()
    sin = sin[position_ids].unsqueeze(unsqueeze_dim).float()
    states_dtype = states.dtype
    states = states.float()
    states_embed = (states * cos) + (rotate_half(states) * sin)
    return states_embed.to(dtype=states_dtype)

def apply_rotary_pos_emb_2D(
    q: torch.Tensor, 
    k: torch.Tensor,
    cos: torch.Tensor,
    sin: torch.Tensor,
    position_ids: torch.Tensor=None
):
    """
    Input (q, k) shape: [bs, num_attention_heads, h, w, hidden_dim] for both
    Input (cos, sin) shape: [h, w, hidden_dim] for both, which is guaranteed by InternLM2RotaryEmbedding2D.forward, so no sqeeze or transpose is needed for cos and sin. But for q and k, be causious!
    position_ids is a 3D tensor, the first dimension represents squence of tokens, the next two represent (x, y) ids. default is torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij'), dim=-1)
    
    output shape: [bs, num_attention_heads, h, w, hidden_dim]
    
    Example:
    h = w = 16
    embedding2D = InternLM2RotaryEmbedding2D(dim)
    q = torch.randn(bs, num_head, h, w, dim)
    k = torch.randn(bs, num_head, h, w, dim)
    cos, sin = embedding2D(q, h, w)
    q_embed, k_embed = apply_rotary_pos_emb_2D(q, k, cos, sin)
    print(q_embed.shape, k_embed.shape)
    """
    if position_ids is None:
        h, w, _ = cos.size()
        position_ids = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij'), dim=-1)
    x_pos = position_ids[..., 0]
    y_pos = position_ids[..., 1]
    cos = cos[x_pos, y_pos].float()
    sin = sin[x_pos, y_pos].float()
    q_dtype, k_dtype = q.dtype, k.dtype
    q, k = q.float(), k.float()
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed.to(dtype=q_dtype), k_embed.to(dtype=k_dtype)


class InternLM2MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))

        return down_proj


# Copied from transformers.model.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


# Modified from transformers.model.llama.modeling_llama.LlamaAttention
class InternLM2Attention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: InternLM2Config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.is_causal = True
        
        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
                f' and `num_heads`: {self.num_heads}).'
            )

        self.wqkv = nn.Linear(
            self.hidden_size,
            (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
            bias=config.bias,
        )

        self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
        self._init_rope()

    def _init_rope(self):
        # if self.config.posid_type=='qkLearnable':
        #     self.local_posid=nn.E
        if self.training:
            self.config.rope_scaling['factor']=1.0
        if self.config.rope_pos_id_version != "default":
            self.config.rope_scaling['type']='new'
        if self.config.rope_scaling is None:
            self.rotary_emb = InternLM2RotaryEmbedding(
                self.head_dim,
                max_position_embeddings=self.max_position_embeddings,
                base=self.config.rope_theta,
            )
        else:
            scaling_type = self.config.rope_scaling['type']
            scaling_factor = self.config.rope_scaling['factor']
            if scaling_type == 'dynamic':
                self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    base=self.config.rope_theta,
                    scaling_factor=scaling_factor,
                )
            elif scaling_type == 'linear':
                # print(f'init linear RoPE: {scaling_type}, {scaling_factor}')
                self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    base=self.config.rope_theta,
                    scaling_factor=scaling_factor,
                )
            elif scaling_type == 'new':
                self.rotary_emb = InternLM2newRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    base=self.config.rope_theta,
                    scaling_factor=scaling_factor,
                    scale_img=self.config.scale_img,
                )
            else:
                raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
        return self.rotary_emb

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if 'padding_mask' in kwargs:
            warnings.warn(
                'Passing `padding_mask` is deprecated and will be removed in v4.37. '
                'Please make sure use `attention_mask` instead.`'
            )

        bsz, q_len, _ = hidden_states.size()

        qkv_states = self.wqkv(hidden_states)

        qkv_states = rearrange(
            qkv_states,
            'b q (h gs d) -> b q h gs d',
            gs=2 + self.num_key_value_groups,
            d=self.head_dim,
        )

        query_states = qkv_states[..., : self.num_key_value_groups, :]
        query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
        key_states = qkv_states[..., -2, :]
        value_states = qkv_states[..., -1, :]
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
                f' {attn_weights.size()}'
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
                )
            attn_weights = attn_weights + attention_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
                f' {attn_output.size()}'
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.wo(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
class InternLM2FlashAttention2(InternLM2Attention):
    """
    InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """
    def init_interactions(self):
        if self.config.posid_type == 'qkLearnable':
            self.num_image_token = 256
            self.local_posid = nn.Embedding(self.num_image_token, self.config.hidden_size)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.LongTensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            selected: Optional[torch.Tensor] = None,
            **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # InternLM2FlashAttention2 attention does not support output_attentions
        # q 【100, E】 
        # kv 【200, E】
        if 'padding_mask' in kwargs:
            warnings.warn(
                'Passing `padding_mask` is deprecated and will be removed in v4.37. '
                'Please make sure use `attention_mask` instead.`'
            )

            # overwrite attention_mask with padding_mask
            attention_mask = kwargs.pop('padding_mask')
        output_attentions = False

        bsz, q_len, _ = hidden_states.size()
        qkv_states = self.wqkv(hidden_states)

        
        qkv_states = rearrange(
            qkv_states,
            'b q (h gs d) -> b q h gs d',
            gs=2 + self.num_key_value_groups,
            d=self.head_dim,
        )
        query_states = qkv_states[..., : self.num_key_value_groups, :]
        query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
        key_states = qkv_states[..., -2, :]
        value_states = qkv_states[..., -1, :]
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        
        if self.config.posid_type == 'qkLearnable':
            image_pos_emb = self.local_posid(torch.arange(self.num_image_token).to(query_states.device))
            num_images = selected.shape[0] // self.num_image_token
            image_indices = selected.view(num_images, self.num_image_token)
            for i in range(num_images):
                image_token_indices = image_indices[i]
                image_query_states = torch.index_select(query_states, dim=2, index=image_token_indices)
                image_key_states = torch.index_select(key_states, dim=2, index=image_token_indices)
                image_query_states += image_pos_emb.unsqueeze(0).unsqueeze(0)
                image_key_states += image_pos_emb.unsqueeze(0).unsqueeze(0)
                query_states.index_copy_(2, image_token_indices, image_query_states)
                key_states.index_copy_(2, image_token_indices, image_key_states)
        
        kv_seq_len=int((position_ids.max()+1).item())

        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        if isinstance(self.rotary_emb,InternLM2newRotaryEmbedding):
            cos, sin = self.rotary_emb(value_states, global_posid=position_ids,selected=selected)
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, torch.arange(0,position_ids.shape[1]).unsqueeze(0))
        else:
            position_ids=position_ids.to(torch.long)
            cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
            query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        past_key_value = (key_states, value_states) if use_cache else None
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        attn_output = self._flash_attention_forward(
            query_states, key_states, value_states, attention_mask, q_len,group=local_group
        )

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()

        attn_output = self.wo(attn_output)

        if not output_attentions:
            attn_weights = None
        
        return attn_output, attn_weights, past_key_value

    def _flash_attention_forward(
            self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None,group=None,
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`int`, *optional*):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
        """
        # Contains at least one padding token in the sequence
        causal = self.is_causal and query_length != 1
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
            # if attn_type=='ring':
            attn_output_unpad,s1,s2 = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=causal,
                return_attn_probs=True
            )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            attn_output,s1,s2 = flash_attn_func(
                query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, return_attn_probs=True
            )

        return attn_output

    def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )

        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q.to(torch.int64),
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )
class InternLM2CrossAttention(nn.Module):
    """Cross-attention mechanism."""

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        # num heads = 16 num key value heads=4
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
                f' and `num_heads`: {self.num_heads}).'
            )

        # Query projection (for target hidden states)
        self.wq = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
        
        # Key-value projection (for encoder hidden states)

        self.wkv = nn.Linear(
            self.hidden_size, 2 * self.num_key_value_heads * self.head_dim, bias=config.bias
        )

        self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
        self._init_rope()
    def reuse_self_attention_params(self, self_attn: nn.Module):
        """
        从 Self-Attention 模块中复用参数:wo 和拆分后的 wqkv。
        
        Args:
            self_attn (nn.Module): 输入的 Self-Attention 模块。
        """
        # 复用输出层 wo

        self.wo.weight.data = self_attn.wo.weight.data.clone()
        if self.config.bias:
            self.wo.bias.data = self_attn.wo.bias.data.clone() if self.config.bias else None

        # 获取 Self-Attention 中的 wqkv 参数
        group_num = self.num_key_value_heads
        wqkv_weight = self_attn.wqkv.weight # [num_heads * 3 * head_dim, hidden_size]
        chunks=torch.chunk(wqkv_weight,group_num,dim=0)
        q_weights_list=[c[:self.num_key_value_groups*self.head_dim,:] for c in chunks]
        kv_weights_list=[c[self.num_key_value_groups*self.head_dim:,:] for c in chunks]
        q_weights=torch.cat(q_weights_list,dim=0)
        kv_weights=torch.cat(kv_weights_list,dim=0)
        if self.config.bias:
            wqkv_bias = self_attn.wqkv.bias.data if self.config.bias else None

        # 计算拆分位置
        q_end = self.num_heads * self.head_dim
        kv_end = q_end + 2 * self.num_key_value_heads * self.head_dim
        
        # 将 wqkv 的参数拆分为 wq 和 wkv
        self.wq.weight.data = q_weights.clone()
        if self.config.bias:
            raise NotImplementedError()
            self.wq.bias.data = wqkv_bias[:q_end].clone()

        self.wkv.weight.data = kv_weights.clone()
        if self.config.bias:
            self.wkv.bias.data = wqkv_bias[q_end:kv_end].clone()
    def _init_rope(self):
        if self.config.rope_scaling is None:
            self.rotary_emb = InternLM2RotaryEmbedding(
                self.head_dim,
                max_position_embeddings=self.config.max_position_embeddings,
                base=self.config.rope_theta,
            )
        else:
            scaling_type = self.config.rope_scaling['type']
            scaling_factor = self.config.rope_scaling['factor']
            if scaling_type == 'dynamic':
                self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.config.max_position_embeddings,
                    base=self.config.rope_theta,
                    scaling_factor=scaling_factor,
                )
            elif scaling_type == 'linear':
                self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.config.max_position_embeddings,
                    base=self.config.rope_theta,
                    scaling_factor=scaling_factor,
                )
            else:
                raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # return attn_output, attn_weights, past_key_value
        bsz, q_len, _ = hidden_states.size()
        src_len = encoder_hidden_states.size(1)
        # Project the query from the target hidden states
        query_states = self.wq(hidden_states)
        # num key value groups =4 head dim=128
        query_states=rearrange(query_states,'b q (h gs d) -> b q h gs d', gs=self.num_key_value_groups  ,d=self.head_dim,)

        # Project the key and value from the encoder hidden states
        kv_states = self.wkv(encoder_hidden_states)
        kv_states = rearrange(
            kv_states, 'b q (h gs d) -> b q h gs d', gs= 2 ,d=self.head_dim,
        )
        key_states, value_states = kv_states.chunk(2, dim=-2)
        key_states=rearrange(key_states,'b q h gs d->b q (h gs) d')
        value_states=rearrange(value_states,'b q h gs d->b q (h gs) d')
        query_states=rearrange(query_states,'b q h gs d->b q (h gs) d')
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        q_seq_len = query_states.shape[-2]
        cos_q, sin_q = self.rotary_emb(value_states, seq_len=q_seq_len)
        cos_k, sin_k = self.rotary_emb(value_states, seq_len=kv_seq_len)
        if position_ids is None:
            position_ids_q=torch.arange(0,q_seq_len).unsqueeze(0).cuda()
            position_ids_k=torch.arange(0,kv_seq_len).unsqueeze(0).cuda()   
        query_states, key_states = apply_rotary_pos_emb_single(query_states, cos_q, sin_q, position_ids_q),apply_rotary_pos_emb_single(key_states,cos_k,sin_k,position_ids_k)
        if past_key_value is not None:
            # Reuse k, v from past key-value states
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states=repeat_kv(value_states,self.num_key_value_groups)
        # 计算 QK 的缩放点积注意力
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        # 检查注意力权重的大小是否匹配
        if attn_weights.size() != (bsz, self.num_heads, q_seq_len, kv_seq_len):
            raise ValueError(
                f'Attention weights should be of size {(bsz, self.num_heads, q_seq_len, kv_seq_len)}, but is '
                f'{attn_weights.size()}'
            )

        # 应用目标序列和源序列的掩码(如果有)
        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_seq_len, kv_seq_len):
                raise ValueError(
                    f'Attention mask should be of size {(bsz, 1, q_seq_len, kv_seq_len)}, but is '
                    f'{attention_mask.size()}'
                )
            attn_weights = attn_weights + attention_mask

        if encoder_attention_mask is not None:
            if encoder_attention_mask.size() != (bsz, 1, 1, kv_seq_len):
                raise ValueError(
                    f'Encoder attention mask should be of size {(bsz, 1, 1, kv_seq_len)}, but is '
                    f'{encoder_attention_mask.size()}'
                )
            attn_weights = attn_weights + encoder_attention_mask
        # 对注意力权重进行 softmax,并投射回原数据类型
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        # 计算注意力输出 (b, num_heads, q_len, head_dim)
        attn_output = torch.matmul(attn_weights, value_states)

        # 检查输出形状是否正确
        if attn_output.size() != (bsz, self.num_heads, q_seq_len, self.head_dim):
            raise ValueError(
                f'Attention output should be of size {(bsz, self.num_heads, q_seq_len, self.head_dim)}, but is '
                f'{attn_output.size()}'
            )

        # 转置并调整输出形状为 (bsz, q_len, hidden_size)
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_seq_len, self.hidden_size)

        # 通过线性层输出
        attn_output = self.wo(attn_output)
        # 如果不需要输出注意力权重,则将其置为 None
        if not output_attentions:
            attn_weights = None

        # 返回注意力输出、注意力权重和缓存的键值对
        return attn_output


class InternLM2CrossAttentionForPackedTraining(InternLM2FlashAttention2):
    def __init__(self, config: InternLM2Config):
        super().__init__(config)
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.is_causal = True


        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} '
                f'and `num_heads`: {self.num_heads}).'
            )

        # 使用两个独立的线性层:wq 和 wkv
        self.wq = nn.Linear(
            self.hidden_size,  # 输入为 query 的 hidden_size
            self.num_heads * self.head_dim,  # 输出为 num_heads * head_dim
            bias=config.bias,
        )

        self.wkv = nn.Linear(
            self.hidden_size,  # 输入为 key-value 的 hidden_size
            2 * self.num_key_value_heads * self.head_dim,  # 输出为 2 * key_value_heads * head_dim
            bias=config.bias,
        )

        # 输出线性层
        self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)

        # 初始化 Rotary Positional Embeddings (RoPE)
        self._init_rope()
    def reuse_self_attention_params(self, self_attn: nn.Module):
        """
        从 Self-Attention 模块中复用参数:wo 和拆分后的 wqkv。
        
        Args:
            self_attn (nn.Module): 输入的 Self-Attention 模块。
        """
        # 复用输出层 wo

        self.wo.weight.data = self_attn.wo.weight.data.clone()
        if self.config.bias:
            self.wo.bias.data = self_attn.wo.bias.data.clone() if self.config.bias else None

        # 获取 Self-Attention 中的 wqkv 参数
        group_num = self.num_key_value_heads
        wqkv_weight = self_attn.wqkv.weight # [num_heads * 3 * head_dim, hidden_size]
        chunks=torch.chunk(wqkv_weight,group_num,dim=0)
        q_weights_list=[c[:self.num_key_value_groups*self.head_dim,:] for c in chunks]
        kv_weights_list=[c[self.num_key_value_groups*self.head_dim:,:] for c in chunks]
        q_weights=torch.cat(q_weights_list,dim=0)
        kv_weights=torch.cat(kv_weights_list,dim=0)
        if self.config.bias:
            wqkv_bias = self_attn.wqkv.bias.data if self.config.bias else None

        # 计算拆分位置
        q_end = self.num_heads * self.head_dim
        kv_end = q_end + 2 * self.num_key_value_heads * self.head_dim
        
        # 将 wqkv 的参数拆分为 wq 和 wkv
        self.wq.weight.data = q_weights.clone()
        if self.config.bias:
            raise NotImplementedError()
            self.wq.bias.data = wqkv_bias[:q_end].clone()

        self.wkv.weight.data = kv_weights.clone()
        if self.config.bias:
            self.wkv.bias.data = wqkv_bias[q_end:kv_end].clone()

    def forward(
            self,
            query_seq, key_value_seq, 
        cu_seqlens_q, cu_seqlens_k,
            position_ids: Optional[Tuple] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # InternLM2FlashAttention2 attention does not support output_attentions
        if 'padding_mask' in kwargs:
            warnings.warn(
                'Passing `padding_mask` is deprecated and will be removed in v4.37. '
                'Please make sure use `attention_mask` instead.`'
            )

            # overwrite attention_mask with padding_mask
            attention_mask = kwargs.pop('padding_mask')
        output_attentions = False

        bsz, q_len, _ = query_seq.size()
        query_states = self.wq(query_seq)
        key_value_states = self.wkv(key_value_seq)
        query_states = rearrange(
            query_states,
            'b q (h gs d) -> b q h gs d',
            gs=self.num_key_value_groups,
            d=self.head_dim,
        )
        query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
        key_value_states=rearrange(
            key_value_states,
            'b q (h gs d) -> b q h gs d',
            gs=2,
            d=self.head_dim
        )
        key_states = key_value_states[..., 0, :]
        value_states = key_value_states[..., 1, :]
        

        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)
        q_position_ids, kv_position_ids = position_ids
        kv_seq_len = kv_position_ids.max()+1
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        q_seq_len = q_position_ids.max()+1
        if past_key_value is not None:
            q_seq_len += past_key_value[0].shape[-2]
        
        # method B
        # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        # -------------------------------------------------
        # method C
        cos, sin = self.rotary_emb(value_states, seq_len=q_seq_len)
        # ---------------------------------------------------
        # q_cos, q_sin = self.rotary_emb(query_states, seq_len=q_seq_len)
        

        if kv_position_ids[0][0]!=0:
            kv_position_ids=kv_position_ids-kv_position_ids[0][0]

        query_states, key_states = apply_rotary_pos_emb_single(query_states, cos, sin, q_position_ids), apply_rotary_pos_emb_single(key_states, cos, sin, kv_position_ids)
        
        
        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        past_key_value = (key_states, value_states) if use_cache else None

        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        # [1, 5, 17, 26, 30]
        # -16 
        # torch.clamp(cu_seqlens_q-16, min=0, max=7)
        # [16, 16, 17, 23]
        # [0, 1, 7]
        # [0, 0, 1, 7, 7] 
        
        attn_output = self._flash_cross_attention_forward(
            query_states, key_states, value_states, cu_seqlens_q, cu_seqlens_k
        )

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()

        attn_output = self.wo(attn_output)
        
        if not output_attentions:
            attn_weights = None
        return attn_output
    def _flash_cross_attention_forward(
        self, query_states, key_states, value_states, 
        cu_seqlens_q, cu_seqlens_k, dropout=0.0, softmax_scale=None
        ):
        """
        Computes cross attention using Flash Attention. 

        Args:
            query_states (`torch.Tensor`):
                Input query states (shape: [1, total_q, nheads, headdim]).
            key_states (`torch.Tensor`):
                Input key states (shape: [1, total_k, nheads, headdim]).
            value_states (`torch.Tensor`):
                Input value states (shape: [1, total_k, nheads, headdim]).
            cu_seqlens_q (`torch.Tensor`):
                Cumulative sequence lengths of query sequences in the batch (shape: [batch_size + 1]).
            cu_seqlens_k (`torch.Tensor`):
                Cumulative sequence lengths of key/value sequences in the batch (shape: [batch_size + 1]).
            dropout (`float`, *optional*):
                Attention dropout.
            softmax_scale (`float`, *optional*):
                Scaling factor for QK^T before softmax (default: 1 / sqrt(headdim)).
        """
        # Remove the batch dimension (squeeze(0)) as Flash Attention expects flattened tensors.
        query_states = query_states.squeeze(0)  # (total_q, nheads, headdim)
        key_states = key_states.squeeze(0)      # (total_k, nheads, headdim)
        value_states = value_states.squeeze(0)  # (total_k, nheads, headdim)
        # Calculate the max sequence lengths for query and key sequences.
        cu_seqlens_q=cu_seqlens_q.squeeze(0)
        cu_seqlens_k=cu_seqlens_k.squeeze(0)

        with torch.no_grad():
            max_seqlen_q = max([
                cu_seqlens_q[idx + 1] - cu_seqlens_q[idx]
                for idx in range(cu_seqlens_q.size(0) - 1)
            ]).item()

            max_seqlen_k = max([
                cu_seqlens_k[idx + 1] - cu_seqlens_k[idx]
                for idx in range(cu_seqlens_k.size(0) - 1)
            ]).item()

        # Set causal=False for cross-attention (unless you need specific behavior).
        causal = self.is_causal
        # method B method C
        assert causal==False

        # Perform Flash Attention.
        attn_output = flash_attn_varlen_func(
            q=query_states,
            k=key_states,
            v=value_states,
            cu_seqlens_q=cu_seqlens_q,
            cu_seqlens_k=cu_seqlens_k,
            max_seqlen_q=max_seqlen_q,
            max_seqlen_k=max_seqlen_k,
            dropout_p=dropout,
            softmax_scale=softmax_scale,
            causal=causal,
        )
        # Check for NaNs in the attention output.
        if torch.isnan(attn_output).any():
            raise ValueError("Attention output contains NaN values")

        # Add back the batch dimension (unsqueeze(0)).
        query_states = query_states.unsqueeze(0)
        key_states = key_states.unsqueeze(0)
        value_states = value_states.unsqueeze(0)

        return attn_output

INTERNLM2_ATTENTION_CLASSES = {
    'eager': InternLM2Attention,
    'flash_attention_2': InternLM2FlashAttention2,
}


# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
class InternLM2DecoderLayer(nn.Module):
    def __init__(self, config: InternLM2Config):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)

        self.feed_forward = InternLM2MLP(config)
        self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.config=config
    def init_interactions(self,compress_seq=False,fuse_method='add', compress_method='avg'):
        self.attention.init_interactions()
        
        if compress_seq:
            self.compress_seq=True
            self.interaction=INTERNLM2_ATTENTION_CLASSES[self.config.attn_implementation](config=self.config)
            self.layer_scale=LayerScale(self.config.hidden_size,init_values=1e-3)
            self.sigmoid_layer_scale = Sigmoid(self.config.hidden_size)
            # self.layer_scale.gamma.requires_grad=False
            self.fuse_method=fuse_method
            if self.fuse_method=='cross-attn':
                self.fuse_layer=InternLM2CrossAttentionForPackedTraining(self.config)
                self.fuse_layer.reuse_self_attention_params(self.attention)
            elif self.fuse_method=='simple-cross-attn':
                self.fuse_layer=InternLM2CrossAttention(self.config)
                self.fuse_layer.reuse_self_attention_params(self.attention)
            elif self.fuse_method=='add':
                self.fuse_layer=None
            else:
                raise NotImplementedError()
            self.compress_method=compress_method
            if compress_method=='attention':
                self.pooling_layer=AttentionPooling(self.config.hidden_size, FINAL_SIZE)
            elif compress_method=='topk':
                self.pooling_layer=TopKPooling(self.config.hidden_size, FINAL_SIZE)
            elif compress_method=='avg':
                self.pooling_layer=None
            else:
                raise NotImplementedError()
            # initialize
            for layer_param, interaction_param in zip(self.attention.parameters(), self.interaction.parameters()):
                interaction_param.data.copy_(layer_param.data)
        else:
            self.compress_seq=False
            # print("succesfully inited?",all(torch.equal(p1, p2) for p1, p2 in zip(self.attention.parameters(), self.interaction.parameters())))
    def fuse(self,compressed_data,hidden_states,inner_idx=0,chunk_num=None,chunk_size=100,cu_seqlens_q=None, cu_seqlens_k=None,method='add',position_ids=None):
        if method=='add':
            # return torch.sum(compressed_data[:,:inner_idx*chunk_size,:])+hidden_states
            return self.layer_scale(torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1))+hidden_states
            # return 0*torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1).unsqueeze(1)+hidden_states
        elif method=='cross-attn':
            cu_seqlens_k_list=chunk_with_boundaries(cu_seqlens_k[0][-1],cu_seqlens_k,chunk_num)
            if inner_idx==0:
                return hidden_states+0.0*self.fuse_layer(hidden_states,compressed_data[:,inner_idx*chunk_size:(inner_idx+1)*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,inner_idx*chunk_size:(inner_idx+1)*chunk_size]))
            else:
                return self.layer_scale(self.fuse_layer(hidden_states,compressed_data[:,(inner_idx-1)*chunk_size:inner_idx*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,(inner_idx-1)*chunk_size:inner_idx*chunk_size])))+hidden_states
        else:
            raise ValueError(f"Unknown method: {method}")
    def compress2(self, hidden_states, pos_ids, method='avg', final_size=FINAL_SIZE):
        if method == 'avg':
            B, N, C = hidden_states.shape

            # 每组的步长
            step_size = N // final_size  # 计算每组的元素数量

            # 将 hidden_states 沿着 N 维度均匀划分为 100 组,并在每组内求平均
            averaged_groups = [
                hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True)
                for i in range(final_size)
            ]

            # 对 pos_ids 进行处理:可以使用中位数来代替浮点平均
            pos_ids_groups = [
                pos_ids[:, i * step_size: (i + 1) * step_size].median(dim=1, keepdim=True).values 
                for i in range(final_size)
            ]

            # 拼接所有组的结果
            result = torch.cat(averaged_groups, dim=1)
            pos_ids_res = torch.cat(pos_ids_groups, dim=1)

            return result, pos_ids_res
    def compress(self,hidden_states,method='avg',final_size=FINAL_SIZE):
        if method=='avg':
            B, N, C = hidden_states.shape

            # 每组的步长
            step_size = N // final_size  # 计算每组的元素数量

            # 将张量沿着 N 维度均匀划分为 100 组,并在每组内求平均
            averaged_groups = [
                hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True) 
                for i in range(final_size)
            ]

            # 拼接所有组的结果,得到 (B, 100, C)
            result = torch.cat(averaged_groups, dim=1)

            return result
        elif method=='attention':
            return self.pooling_layer(hidden_states)
        elif method=='topk':
            return self.pooling_layer(hidden_states)
        else:
            raise ValueError(f"Unknown method: {method}")
    
    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            origin_cu_seq_lens: Optional[torch.Tensor] = None,
            fuse_only: Optional[torch.Tensor] = False,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            selected: Optional[torch.Tensor] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """
        if 'padding_mask' in kwargs:
            warnings.warn(
                'Passing `padding_mask` is deprecated and will be removed in v4.37. '
                'Please make sure use `attention_mask` instead.`'
            )
        residual = hidden_states
        hidden_states = self.attention_norm(hidden_states)
        if not hasattr(self,'compress_seq'):
            self.compress_seq=False
        if self.compress_seq:
            if fuse_only:
                _, length, channels= hidden_states.shape
                PADDING_LENGTH=8192
                # padding hidden states to b,padding length, c
                padding_size = PADDING_LENGTH - length
    
                # 创建填充的张量
                pad_hidden_states = torch.zeros((hidden_states.size(0), padding_size, channels), device=hidden_states.device).to(hidden_states.dtype)
                # 将原始的 hidden_states 复制到填充的张量中
                pad_hidden_states = torch.cat((hidden_states, pad_hidden_states), dim=1)
                pad_all_hiddenstates=GatherLayer.apply(pad_hidden_states)
                length_tensor = torch.tensor([length], dtype=torch.int).cuda()
                origin_length_tensor=GatherLayer.apply(length_tensor)

                # method C----------------------------------------
                
                if inner_idx>0:
                    prev_seq=pad_all_hiddenstates[:inner_idx]

                    prev_len=origin_length_tensor[:inner_idx]
                    B = prev_seq.size(1)  # batch size
                    C = prev_seq.size(3)  # channels

                    # 创建一个列表来存储每个卡上去除填充后的 hidden states
                    unpad_hidden_states_list = []
                    # 遍历每个进程的 hidden states
                    for i in range(prev_len.size(0)):  # num_processes
                        # 从 prev_seq 中提取有效的 hidden states
                        valid_hidden_states = prev_seq[i, :B, :prev_len[i], :]  # 取前 prev_len[i] 个时间步
                        unpad_hidden_states_list.append(valid_hidden_states)

                
                    prev_hidden_states = torch.cat(unpad_hidden_states_list, dim=1)
                else:
                    assert dist.get_rank()==0
                    prev_seq=pad_all_hiddenstates[:1]

                    prev_len=origin_length_tensor[:1]
                    B = prev_seq.size(1)  # batch size
                    C = prev_seq.size(3)  # channels

                    # 创建一个列表来存储每个卡上去除填充后的 hidden states
                    unpad_hidden_states_list = []
                    # 遍历每个进程的 hidden states
                    for i in range(prev_len.size(0)):  # num_processes
                        # 从 prev_seq 中提取有效的 hidden states
                        valid_hidden_states = prev_seq[i, :B, :prev_len[i], :]  # 取前 prev_len[i] 个时间步
                        unpad_hidden_states_list.append(valid_hidden_states)

                
                    prev_hidden_states = torch.cat(unpad_hidden_states_list, dim=1)
                # since batch size=1, only 1 sample packed
                # TODO: make compatible for other cases

                prev_position_id = torch.arange(0,prev_hidden_states.size(1)).unsqueeze(0).cuda()
                prev_hidden_states,prev_position_id=self.compress2(prev_hidden_states,prev_position_id)
                cu_seqlens_k = torch.tensor([[0,prev_hidden_states.size(1)]],dtype=attention_mask.dtype,device=attention_mask.device)
                right_bound = prev_len.sum().item()
                
                left_bound = right_bound-length_tensor.item()
                position_ids = torch.arange(left_bound,right_bound).unsqueeze(0).cuda()
                # ------------------------------------------------
            else:
                _, length, _ = hidden_states.shape
                length_tensor = torch.tensor([length], dtype=torch.int).cuda()
                compressed_chunk = self.compress(hidden_states,method=self.compress_method)
                B, N, C = compressed_chunk.shape
                compressed_data=GatherLayer.apply(compressed_chunk)
                origin_length_tensor=GatherLayer.apply(length_tensor)
                origin_length=torch.sum(origin_length_tensor,dim=0).unsqueeze(1)#shape B,1
                pn_size = compressed_data.size(0) * compressed_data.size(2)                
                compressed_data = compressed_data.reshape(-1, pn_size, compressed_data.size(3))
                new_length=compressed_data.shape[1]
                new_cu_seq_lens=origin_cu_seq_lens*new_length//origin_length
                new_cu_seq_lens=new_cu_seq_lens.to(torch.int32).to(hidden_states.device)
                compressed_pos_id=torch.arange(0,compressed_data.shape[1]).unsqueeze(0).repeat(B,1).cuda()
                compressed_data = self.interaction(compressed_data, new_cu_seq_lens, compressed_pos_id, None, output_attentions, use_cache)[0] # 1, 4*100, E
                chunk_num=compressed_data.size(1)//N
                        # this_fuse = partial(self.fuse, idx=idx,inner_idx=inner_idx,chunk_num=chunk_num,chunk_size=N, cu_seqlens_q=attention_mask, cu_seqlens_k=new_cu_seq_lens, method=self.fuse_method,fuse_layer=self.fuse_layers[idx],position_ids=(position_ids,compressed_pos_id))
                # hidden_states=self.fuse(idx, compressed_data,hidden_states,inner_idx,chunk_num,N,attention_mask, new_cu_seq_lens, method=self.fuse_method,fuse_layer=self.fuse_layers[idx],position_ids=(position_ids,compressed_pos_id))
        hidden_states, self_attn_weights, present_key_value = self.attention(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            selected=selected,
            **kwargs,
        )

        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.ffn_norm(hidden_states)
        hidden_states = self.feed_forward(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


InternLM2_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`InternLM2Config`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
@add_start_docstrings(
    'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
    InternLM2_START_DOCSTRING,
)
class InternLM2PreTrainedModel(PreTrainedModel):
    config_class = InternLM2Config
    base_model_prefix = 'model'
    supports_gradient_checkpointing = True
    _no_split_modules = ['InternLM2DecoderLayer']
    _skip_keys_device_placement = 'past_key_values'

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


InternLM2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
            when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


# Modified from transformers.model.llama.modeling_llama.LlamaModel
@add_start_docstrings(
    'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
    InternLM2_START_DOCSTRING,
)
class GatherLayer(torch.autograd.Function):
    """Gather tensors from all process, supporting backward propagation."""

    @staticmethod
    def forward(ctx, input):
        ctx.save_for_backward(input)
        output = [torch.zeros_like(input) for _ in range(dist.get_world_size(local_group))]
        dist.all_gather(output, input, group=local_group)
        return torch.stack(output, 0)

    @staticmethod
    def backward(ctx, grads):
        (input,) = ctx.saved_tensors
        dist.all_reduce(grads, group=local_group)
        grad_out = torch.zeros_like(input)
        grad_out[:] = grads[dist.get_rank(local_group)]
        return grad_out

class InternLM2Model(InternLM2PreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]

    Args:
        config: InternLM2Config
    """

    _auto_class = 'AutoModel'

    def __init__(self, config: InternLM2Config):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.config = config
        if not has_flash_attn:
            self.config.attn_implementation = 'eager'
            print('Warning: Flash attention is not available, using eager attention instead.')

        self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)

        self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False
        # global attn_type
        # attn_type = None
        self.post_init()

    def init_interactions(self,compress_seq, fuse_method='add', compress_method='avg'):
        # lr=0.0 跑10个iter,save ckpt,看权重
        for layer in self.layers:
            layer.init_interactions(compress_seq,fuse_method,compress_method)

    def get_input_embeddings(self):
        return self.tok_embeddings

    def set_input_embeddings(self, value):
        self.tok_embeddings = value

    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            compress_seq: Optional[bool] = False,
            group_list: Optional[List] = None,
            chunk_num: Optional[int] = None,
            origin_cu_seq_lens: Optional[torch.tensor] = None,
            interaction: Optional[bool] = True,
            selected: Optional[torch.tensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        # origin_cu_seq_lens: B,N

        global local_group
        if group_list is not None:
            for group_idx,group in enumerate(group_list):
                if type(group)==torch.distributed.distributed_c10d.ProcessGroup:
                    # assert type(group)==torch.distributed.distributed_c10d.ProcessGroup
                    break
            global inner_idx
            inner_idx = dist.get_rank(group)
            local_group=group
        else:
            local_group=None
            inner_idx = dist.get_rank()
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if self.config.attn_implementation == 'flash_attention_2':
            _import_flash_attn()

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape[:2]
        elif inputs_embeds is not None:
            batch_size, seq_length = inputs_embeds.shape[:2]
        else:
            raise ValueError('You have to specify either input_ids or inputs_embeds')

        seq_length_with_past = seq_length
        past_key_values_length = 0
        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0)

        if inputs_embeds is None:
            inputs_embeds = self.tok_embeddings(input_ids)
        if self.config.attn_implementation == 'flash_attention_2':
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        else:
            if attention_mask is None:
                attention_mask = torch.ones(
                    (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
                )
            attention_mask = self._prepare_decoder_attention_mask(
                attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
            )
        
        
            
        # embed positions
        hidden_states = inputs_embeds
        
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None
        for idx, decoder_layer in enumerate(self.layers):
            # in which process group

            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None
            
            fuse_only = not interaction
            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward
                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    origin_cu_seq_lens,
                    fuse_only,
                    None,
                    selected,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    origin_cu_seq_lens=origin_cu_seq_lens,
                    fuse_only=fuse_only,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    selected=selected,
                )
            hidden_states = layer_outputs[0]
            
            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)
        
                
        hidden_states = self.norm(hidden_states)
        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )
    
    def fuse(self,idx ,compressed_data,hidden_states,inner_idx=0,chunk_num=None,chunk_size=100,cu_seqlens_q=None, cu_seqlens_k=None,method='add',fuse_layer=None,position_ids=None):
        if method=='add':
            # return torch.sum(compressed_data[:,:inner_idx*chunk_size,:])+hidden_states
            return self.layer_scale[idx](torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1))+hidden_states
            # return 0*torch.sum(compressed_data[:,:inner_idx*chunk_size,:],dim=1).unsqueeze(1)+hidden_states
        elif method=='cross-attn':
            cu_seqlens_k_list=chunk_with_boundaries(cu_seqlens_k[0][-1],cu_seqlens_k,chunk_num)
            if inner_idx==0:
                return hidden_states+0.0*fuse_layer(hidden_states,compressed_data[:,inner_idx*chunk_size:(inner_idx+1)*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,inner_idx*chunk_size:(inner_idx+1)*chunk_size]))
            else:
                return self.layer_scale[idx](fuse_layer(hidden_states,compressed_data[:,(inner_idx-1)*chunk_size:inner_idx*chunk_size,:],cu_seqlens_q,cu_seqlens_k_list[inner_idx],position_ids=(position_ids[0],position_ids[1][:,(inner_idx-1)*chunk_size:inner_idx*chunk_size])))+hidden_states
        else:
            raise ValueError(f"Unknown method: {method}")
    def compress(self,idx,hidden_states, method='avg',final_size=FINAL_SIZE):
        if method=='avg':
            B, N, C = hidden_states.shape

            # 每组的步长
            step_size = N // final_size  # 计算每组的元素数量

            # 将张量沿着 N 维度均匀划分为 100 组,并在每组内求平均
            averaged_groups = [
                hidden_states[:, i * step_size: (i + 1) * step_size, :].mean(dim=1, keepdim=True) 
                for i in range(final_size)
            ]

            # 拼接所有组的结果,得到 (B, 100, C)
            result = torch.cat(averaged_groups, dim=1)

            return result
        elif method=='attention':
            return self.pooling_layers[idx](hidden_states)
        elif method=='topk':
            return self.pooling_layers[idx](hidden_states)
        else:
            raise ValueError(f"Unknown method: {method}")


# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
    _auto_class = 'AutoModelForCausalLM'

    _tied_weights_keys = ['output.weight']

    def __init__(self, config):
        super().__init__(config)
        self.model = InternLM2Model(config)
        self.vocab_size = config.vocab_size
        self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.tok_embeddings

    def set_input_embeddings(self, value):
        self.model.tok_embeddings = value

    def get_output_embeddings(self):
        return self.output

    def set_output_embeddings(self, new_embeddings):
        self.output = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            compress_seq: Optional[bool] = False,
            group_list: Optional[List] = None,
            chunk_num: Optional[int] = 1,
            origin_cu_seq_lens: Optional[torch.tensor] = None,
            interaction: Optional[bool] = True,
            selected: Optional[torch.tensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, InternLM2ForCausalLM

        >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs  = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            compress_seq=compress_seq,
            group_list=group_list,
            chunk_num=chunk_num,
            origin_cu_seq_lens=origin_cu_seq_lens,
            interaction=interaction,
            selected=selected,
        )
        hidden_states = outputs[0]
        logits = self.output(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output
        device = input_ids.device if input_ids is not None else inputs_embeds.device
        output = CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
        output['logits'] = output['logits'].to(device)
        return output

    def prepare_inputs_for_generation(
            self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]
        
        position_ids = kwargs.get('position_ids', None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1]:]
        elif position_ids is not None:
            if self.rope_pos_id_version!='default' and past_key_values is not None:
                position_ids=(position_ids[:,-1]+attention_mask[:,position_ids.shape[1]:].sum(dim=1)).unsqueeze(1)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {'inputs_embeds': inputs_embeds}
        else:
            model_inputs = {'input_ids': input_ids}
        model_inputs.update(
            {
                'position_ids': position_ids,
                'past_key_values': past_key_values,
                'use_cache': kwargs.get('use_cache'),
                'attention_mask': attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past

    def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
        if tokenizer.add_bos_token:
            prompt = ''
        else:
            prompt = tokenizer.bos_token
        if meta_instruction:
            prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
        for record in history:
            prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
        prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
        return tokenizer([prompt], return_tensors='pt')

    @torch.no_grad()
    def chat(
            self,
            tokenizer,
            query: str,
            history: List[Tuple[str, str]] = [],
            streamer: Optional[BaseStreamer] = None,
            max_new_tokens: int = 1024,
            do_sample: bool = True,
            temperature: float = 0.8,
            top_p: float = 0.8,
            meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
                                    '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
                                    '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
            **kwargs,
    ):
        inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
        inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
        # also add end-of-assistant token in eos token id to avoid unnecessary generation
        eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
        outputs = self.generate(
            **inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            do_sample=do_sample,
            temperature=temperature,
            top_p=top_p,
            eos_token_id=eos_token_id,
            **kwargs,
        )
        outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
        response = tokenizer.decode(outputs, skip_special_tokens=True)
        response = response.split('<|im_end|>')[0]
        history = history + [(query, response)]
        return response, history

    @torch.no_grad()
    def stream_chat(
            self,
            tokenizer,
            query: str,
            history: List[Tuple[str, str]] = [],
            max_new_tokens: int = 1024,
            do_sample: bool = True,
            temperature: float = 0.8,
            top_p: float = 0.8,
            **kwargs,
    ):
        """
        Return a generator in format: (response, history)
        Eg.
        ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
        ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
        """
        if BaseStreamer is None:
            raise ModuleNotFoundError(
                'The version of `transformers` is too low. Please make sure '
                'that you have installed `transformers>=4.28.0`.'
            )

        response_queue = queue.Queue(maxsize=20)

        class ChatStreamer(BaseStreamer):
            def __init__(self, tokenizer) -> None:
                super().__init__()
                self.tokenizer = tokenizer
                self.queue = response_queue
                self.query = query
                self.history = history
                self.response = ''
                self.cache = []
                self.received_inputs = False
                self.queue.put((self.response, history + [(self.query, self.response)]))

            def put(self, value):
                if len(value.shape) > 1 and value.shape[0] > 1:
                    raise ValueError('ChatStreamer only supports batch size 1')
                elif len(value.shape) > 1:
                    value = value[0]

                if not self.received_inputs:
                    # The first received value is input_ids, ignore here
                    self.received_inputs = True
                    return

                self.cache.extend(value.tolist())
                token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
                if token.strip() != '<|im_end|>':
                    self.response = self.response + token
                    history = self.history + [(self.query, self.response)]
                    self.queue.put((self.response, history))
                    self.cache = []
                else:
                    self.end()

            def end(self):
                self.queue.put(None)

        def stream_producer():
            return self.chat(
                tokenizer=tokenizer,
                query=query,
                streamer=ChatStreamer(tokenizer=tokenizer),
                history=history,
                max_new_tokens=max_new_tokens,
                do_sample=do_sample,
                temperature=temperature,
                top_p=top_p,
                **kwargs,
            )

        def consumer():
            producer = threading.Thread(target=stream_producer)
            producer.start()
            while True:
                res = response_queue.get()
                if res is None:
                    return
                yield res

        return consumer()


# Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
@add_start_docstrings(
    """
    The InternLM2 Model transformer with a sequence classification head on top (linear layer).

    [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
    as other causal models (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    InternLM2_START_DOCSTRING,
)
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = InternLM2Model(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.tok_embeddings

    def set_input_embeddings(self, value):
        self.model.tok_embeddings = value

    @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
                    logits.device
                )
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = 'regression'
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = 'single_label_classification'
                else:
                    self.config.problem_type = 'multi_label_classification'

            if self.config.problem_type == 'regression':
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == 'single_label_classification':
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == 'multi_label_classification':
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )