File size: 6,497 Bytes
cb0dd3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "a436c0a1-3410-4a7f-a186-9246075ac815",
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoModel\n",
"model=AutoModel.from_pretrained(\"OpenGVLab/ViCLIP-L-14-hf\",trust_remote_code=True)\n",
"tokenizer = model.tokenizer\n",
"model_tokenizer={\"viclip\":model,\"tokenizer\":tokenizer}\n",
"print(\"done\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a425a5da-ceaf-4b89-9845-c8ba576902d8",
"metadata": {},
"outputs": [],
"source": [
"# video data\n",
"import numpy as np\n",
"import os\n",
"import cv2\n",
"import torch\n",
"def _frame_from_video(video):\n",
" while video.isOpened():\n",
" success, frame = video.read()\n",
" if success:\n",
" yield frame\n",
" else:\n",
" break\n",
"video = cv2.VideoCapture('example1.mp4')\n",
"frames = [x for x in _frame_from_video(video)]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "aac775ce",
"metadata": {},
"outputs": [],
"source": [
"# function\n",
"\n",
"def get_text_feat_dict(texts, clip, tokenizer, text_feat_d={}):\n",
" for t in texts:\n",
" feat = clip.get_text_features(t, tokenizer, text_feat_d)\n",
" text_feat_d[t] = feat\n",
" return text_feat_d\n",
"\n",
"def get_vid_feat(frames, clip):\n",
" return clip.get_vid_features(frames)\n",
"\n",
"v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3)\n",
"v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3)\n",
"def normalize(data):\n",
" return (data/255.0-v_mean)/v_std\n",
"\n",
"def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')):\n",
" assert(len(vid_list) >= fnum)\n",
" step = len(vid_list) // fnum\n",
" vid_list = vid_list[::step][:fnum]\n",
" vid_list = [cv2.resize(x[:,:,::-1], target_size) for x in vid_list]\n",
" vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list]\n",
" vid_tube = np.concatenate(vid_tube, axis=1)\n",
" vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3))\n",
" vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float()\n",
" return vid_tube\n",
"def retrieve_text(frames, \n",
" texts, \n",
" models={'viclip':None, \n",
" 'tokenizer':None},\n",
" topk=5, \n",
" device=torch.device('cuda')):\n",
" # clip, tokenizer = get_clip(name, model_cfg['size'], model_cfg['pretrained'], model_cfg['reload'])\n",
" assert(type(models)==dict and models['viclip'] is not None and models['tokenizer'] is not None)\n",
" clip, tokenizer = models['viclip'], models['tokenizer']\n",
" clip = clip.to(device)\n",
" frames_tensor = frames2tensor(frames, device=device)\n",
" vid_feat = get_vid_feat(frames_tensor, clip)\n",
"\n",
" text_feat_d = {}\n",
" text_feat_d = get_text_feat_dict(texts, clip, tokenizer, text_feat_d)\n",
" text_feats = [text_feat_d[t] for t in texts]\n",
" text_feats_tensor = torch.cat(text_feats, 0)\n",
" \n",
" probs, idxs = clip.get_predict_label(vid_feat, text_feats_tensor, top=topk)\n",
"\n",
" ret_texts = [texts[i] for i in idxs.numpy()[0].tolist()]\n",
" return ret_texts, probs.numpy()[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a2969ba6-19d0-4893-b071-b82fa046c312",
"metadata": {},
"outputs": [],
"source": [
"# retrieval\n",
"text_candidates = [\"A playful dog and its owner wrestle in the snowy yard, chasing each other with joyous abandon.\",\n",
" \"A man in a gray coat walks through the snowy landscape, pulling a sleigh loaded with toys.\",\n",
" \"A person dressed in a blue jacket shovels the snow-covered pavement outside their house.\",\n",
" \"A pet dog excitedly runs through the snowy yard, chasing a toy thrown by its owner.\",\n",
" \"A person stands on the snowy floor, pushing a sled loaded with blankets, preparing for a fun-filled ride.\",\n",
" \"A man in a gray hat and coat walks through the snowy yard, carefully navigating around the trees.\",\n",
" \"A playful dog slides down a snowy hill, wagging its tail with delight.\",\n",
" \"A person in a blue jacket walks their pet on a leash, enjoying a peaceful winter walk among the trees.\",\n",
" \"A man in a gray sweater plays fetch with his dog in the snowy yard, throwing a toy and watching it run.\",\n",
" \"A person bundled up in a blanket walks through the snowy landscape, enjoying the serene winter scenery.\"]\n",
"texts, probs = retrieve_text(frames, text_candidates, models=model_tokenizer, topk=5)\n",
"\n",
"for t, p in zip(texts, probs):\n",
" print(f'text: {t} ~ prob: {p:.4f}')\n",
" \n",
"# text: A man in a gray sweater plays fetch with his dog in the snowy yard, throwing a toy and watching it run. ~ prob: 0.8333\n",
"# text: A playful dog and its owner wrestle in the snowy yard, chasing each other with joyous abandon. ~ prob: 0.1266\n",
"# text: A pet dog excitedly runs through the snowy yard, chasing a toy thrown by its owner. ~ prob: 0.0368\n",
"# text: A person dressed in a blue jacket shovels the snow-covered pavement outside their house. ~ prob: 0.0030\n",
"# text: A playful dog slides down a snowy hill, wagging its tail with delight. ~ prob: 0.0003"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "84922de7-b41c-41c1-87a0-b28e52da9b5d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|