|
import os |
|
import logging |
|
from collections import OrderedDict |
|
from pkg_resources import packaging |
|
from .simple_tokenizer import SimpleTokenizer as _Tokenizer |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
import torch.utils.checkpoint as checkpoint |
|
import functools |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
MODEL_PATH = 'https://huggingface.co/laion' |
|
_MODELS = { |
|
"ViT-L/14": os.path.join(MODEL_PATH, "CLIP-ViT-L-14-DataComp.XL-s13B-b90K", "vit_l14_text.pth"), |
|
"ViT-B/16": os.path.join(MODEL_PATH, "CLIP-ViT-B-16-DataComp.XL-s13B-b90K", "vit_b16_text.pth"), |
|
} |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
ret = super().forward(x.type(torch.float32)) |
|
return ret.type(orig_type) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)) |
|
])) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
def attention(self, x: torch.Tensor): |
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = x + self.attention(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, |
|
checkpoint_num: int = 0): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) |
|
|
|
self.checkpoint_num = checkpoint_num |
|
|
|
def forward(self, x: torch.Tensor): |
|
if self.checkpoint_num > 0: |
|
segments = min(self.checkpoint_num, len(self.resblocks)) |
|
return checkpoint.checkpoint_sequential(self.resblocks, segments, x) |
|
else: |
|
return self.resblocks(x) |
|
|
|
|
|
class CLIP_TEXT(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
context_length: int, |
|
vocab_size: int, |
|
transformer_width: int, |
|
transformer_heads: int, |
|
transformer_layers: int, |
|
checkpoint_num: int, |
|
tokenizer_path:str=None, |
|
): |
|
super().__init__() |
|
|
|
self.context_length = context_length |
|
if tokenizer_path: |
|
self._tokenizer = _Tokenizer(tokenizer_path) |
|
else: |
|
self._tokenizer = _Tokenizer() |
|
|
|
self.transformer = Transformer( |
|
width=transformer_width, |
|
layers=transformer_layers, |
|
heads=transformer_heads, |
|
attn_mask=self.build_attention_mask(), |
|
checkpoint_num=checkpoint_num, |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.token_embedding = nn.Embedding(vocab_size, transformer_width) |
|
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) |
|
self.ln_final = LayerNorm(transformer_width) |
|
|
|
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) |
|
|
|
def no_weight_decay(self): |
|
return {'token_embedding', 'positional_embedding'} |
|
|
|
@functools.lru_cache(maxsize=None) |
|
def build_attention_mask(self): |
|
|
|
|
|
mask = torch.empty(self.context_length, self.context_length) |
|
mask.fill_(float("-inf")) |
|
mask.triu_(1) |
|
return mask |
|
|
|
def tokenize(self, texts, context_length=77, truncate=True): |
|
""" |
|
Returns the tokenized representation of given input string(s) |
|
Parameters |
|
---------- |
|
texts : Union[str, List[str]] |
|
An input string or a list of input strings to tokenize |
|
context_length : int |
|
The context length to use; all CLIP models use 77 as the context length |
|
truncate: bool |
|
Whether to truncate the text in case its encoding is longer than the context length |
|
Returns |
|
------- |
|
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. |
|
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. |
|
""" |
|
if isinstance(texts, str): |
|
texts = [texts] |
|
|
|
sot_token = self._tokenizer.encoder["<|startoftext|>"] |
|
eot_token = self._tokenizer.encoder["<|endoftext|>"] |
|
all_tokens = [[sot_token] + self._tokenizer.encode(text) + [eot_token] for text in texts] |
|
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) |
|
else: |
|
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) |
|
|
|
for i, tokens in enumerate(all_tokens): |
|
if len(tokens) > context_length: |
|
if truncate: |
|
tokens = tokens[:context_length] |
|
tokens[-1] = eot_token |
|
else: |
|
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") |
|
result[i, :len(tokens)] = torch.tensor(tokens) |
|
|
|
return result |
|
|
|
def forward(self, text): |
|
x = self.token_embedding(text) |
|
|
|
x = x + self.positional_embedding |
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x) |
|
|
|
|
|
|
|
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection |
|
|
|
return x |
|
|
|
|
|
def clip_text_b16( |
|
embed_dim=512, |
|
context_length=77, |
|
vocab_size=49408, |
|
transformer_width=512, |
|
transformer_heads=8, |
|
transformer_layers=12, |
|
checkpoint_num=0, |
|
pretrained=True, |
|
tokenizer_path:str=None, |
|
): |
|
|
|
model = CLIP_TEXT( |
|
embed_dim, |
|
context_length, |
|
vocab_size, |
|
transformer_width, |
|
transformer_heads, |
|
transformer_layers, |
|
checkpoint_num, |
|
tokenizer_path, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if pretrained: |
|
if isinstance(pretrained, str) and pretrained != "bert-base-uncased": |
|
pretrained = _MODELS[pretrained] |
|
else: |
|
pretrained = _MODELS["ViT-B/16"] |
|
logger.info(f"Load pretrained weights from {pretrained}") |
|
state_dict = torch.load(pretrained, map_location='cpu') |
|
if context_length != state_dict["positional_embedding"].size(0): |
|
|
|
print(f"Resize positional embedding from {state_dict['positional_embedding'].size(0)} to {context_length}") |
|
if context_length < state_dict["positional_embedding"].size(0): |
|
state_dict["positional_embedding"] = state_dict["positional_embedding"][:context_length] |
|
else: |
|
state_dict["positional_embedding"] = F.pad( |
|
state_dict["positional_embedding"], |
|
(0, 0, 0, context_length - state_dict["positional_embedding"].size(0)), |
|
value=0, |
|
) |
|
|
|
message = model.load_state_dict(state_dict, strict=False) |
|
print(f"Load pretrained weights from {pretrained}: {message}") |
|
return model.eval() |
|
|
|
|
|
def clip_text_l14( |
|
embed_dim=768, |
|
context_length=77, |
|
vocab_size=49408, |
|
transformer_width=768, |
|
transformer_heads=12, |
|
transformer_layers=12, |
|
checkpoint_num=0, |
|
pretrained=True, |
|
tokenizer_path:str=None, |
|
): |
|
model = CLIP_TEXT( |
|
embed_dim, |
|
context_length, |
|
vocab_size, |
|
transformer_width, |
|
transformer_heads, |
|
transformer_layers, |
|
checkpoint_num, |
|
tokenizer_path, |
|
) |
|
if pretrained: |
|
if isinstance(pretrained, str) and pretrained != "bert-base-uncased": |
|
pretrained = _MODELS[pretrained] |
|
else: |
|
pretrained = _MODELS["ViT-L/14"] |
|
logger.info(f"Load pretrained weights from {pretrained}") |
|
state_dict = torch.load(pretrained, map_location='cpu') |
|
if context_length != state_dict["positional_embedding"].size(0): |
|
|
|
print(f"Resize positional embedding from {state_dict['positional_embedding'].size(0)} to {context_length}") |
|
if context_length < state_dict["positional_embedding"].size(0): |
|
state_dict["positional_embedding"] = state_dict["positional_embedding"][:context_length] |
|
else: |
|
state_dict["positional_embedding"] = F.pad( |
|
state_dict["positional_embedding"], |
|
(0, 0, 0, context_length - state_dict["positional_embedding"].size(0)), |
|
value=0, |
|
) |
|
|
|
message = model.load_state_dict(state_dict, strict=False) |
|
print(f"Load pretrained weights from {pretrained}: {message}") |
|
return model.eval() |
|
|
|
|
|
def clip_text_l14_336( |
|
embed_dim=768, |
|
context_length=77, |
|
vocab_size=49408, |
|
transformer_width=768, |
|
transformer_heads=12, |
|
transformer_layers=12, |
|
): |
|
raise NotImplementedError |
|
model = CLIP_TEXT( |
|
embed_dim, |
|
context_length, |
|
vocab_size, |
|
transformer_width, |
|
transformer_heads, |
|
transformer_layers |
|
) |
|
pretrained = _MODELS["ViT-L/14_336"] |
|
logger.info(f"Load pretrained weights from {pretrained}") |
|
state_dict = torch.load(pretrained, map_location='cpu') |
|
model.load_state_dict(state_dict, strict=False) |
|
return model.eval() |
|
|
|
|
|
def build_clip(config): |
|
model_cls = config.text_encoder.clip_teacher |
|
model = eval(model_cls)() |
|
return model |
|
|