MaziyarPanahi commited on
Commit
a0e8e64
·
verified ·
1 Parent(s): 22bbd68

feat: Upload fine-tuned medical NER model OpenMed-ZeroShot-NER-DNA-Base-220M

Browse files
Files changed (1) hide show
  1. README.md +2 -4
README.md CHANGED
@@ -103,7 +103,7 @@ The JNLPBA (Joint Workshop on Natural Language Processing in Biomedicine and its
103
  ### Installation
104
 
105
  ```bash
106
- pip install gliner==0.2.21
107
  ```
108
 
109
  ### Usage
@@ -116,7 +116,7 @@ from transformers import pipeline
116
  model_name = "OpenMed/OpenMed-ZeroShot-NER-DNA-Base-220M"
117
 
118
  from gliner import GLiNER
119
- model = GLiNER.from_pretrained("OpenMed-ZeroShot-NER-DNA-Base-220M")
120
 
121
  # Example usage with default entity types
122
  text = "The p53 protein plays a crucial role in tumor suppression."
@@ -169,8 +169,6 @@ This model is particularly useful for:
169
  - **Input**: Biomedical text
170
  - **Output**: Named entity predictions
171
 
172
- For more information about GLiNER, visit the [GLiNER repository](https://github.com/urchade/gliner).
173
-
174
  ## 📜 License
175
 
176
  Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.
 
103
  ### Installation
104
 
105
  ```bash
106
+ pip install -q "gliner[tokenizers]"
107
  ```
108
 
109
  ### Usage
 
116
  model_name = "OpenMed/OpenMed-ZeroShot-NER-DNA-Base-220M"
117
 
118
  from gliner import GLiNER
119
+ model = GLiNER.from_pretrained(model_name)
120
 
121
  # Example usage with default entity types
122
  text = "The p53 protein plays a crucial role in tumor suppression."
 
169
  - **Input**: Biomedical text
170
  - **Output**: Named entity predictions
171
 
 
 
172
  ## 📜 License
173
 
174
  Licensed under the Apache License 2.0. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details.