openvino-ci commited on
Commit
ad593fb
1 Parent(s): b7a6445

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -4,7 +4,7 @@ license_link: https://choosealicense.com/licenses/mit/
4
  ---
5
  # phi-2-int4-ov
6
  * Model creator: [Microsoft](https://huggingface.co/microsoft)
7
- * Original model: [phi-2](https://huggingface.co/microsoft/phi-2)
8
 
9
  ## Description
10
  This is [phi-2](https://huggingface.co/microsoft/phi-2) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
@@ -41,7 +41,7 @@ pip install optimum[openvino]
41
  from transformers import AutoTokenizer
42
  from optimum.intel.openvino import OVModelForCausalLM
43
 
44
- model_id = "OpenVINO/-int4-ov"
45
  tokenizer = AutoTokenizer.from_pretrained(model_id)
46
  model = OVModelForCausalLM.from_pretrained(model_id)
47
 
 
4
  ---
5
  # phi-2-int4-ov
6
  * Model creator: [Microsoft](https://huggingface.co/microsoft)
7
+ * Original model: [phi-2](https://huggingface.co/microsoft/phi-2)
8
 
9
  ## Description
10
  This is [phi-2](https://huggingface.co/microsoft/phi-2) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
 
41
  from transformers import AutoTokenizer
42
  from optimum.intel.openvino import OVModelForCausalLM
43
 
44
+ model_id = "OpenVINO/phi-2-int4-ov"
45
  tokenizer = AutoTokenizer.from_pretrained(model_id)
46
  model = OVModelForCausalLM.from_pretrained(model_id)
47
 
config.json CHANGED
@@ -1,13 +1,9 @@
1
  {
2
- "_name_or_path": "microsoft/phi-2",
3
  "architectures": [
4
  "PhiForCausalLM"
5
  ],
6
  "attention_dropout": 0.0,
7
- "auto_map": {
8
- "AutoConfig": "configuration_phi.PhiConfig",
9
- "AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
10
- },
11
  "bos_token_id": 50256,
12
  "embd_pdrop": 0.0,
13
  "eos_token_id": 50256,
@@ -27,8 +23,7 @@
27
  "rope_scaling": null,
28
  "rope_theta": 10000.0,
29
  "tie_word_embeddings": false,
30
- "torch_dtype": "float16",
31
- "transformers_version": "4.40.1",
32
  "use_cache": true,
33
  "vocab_size": 51200
34
  }
 
1
  {
2
+ "_name_or_path": "OpenVINO/phi-2-int4-ov",
3
  "architectures": [
4
  "PhiForCausalLM"
5
  ],
6
  "attention_dropout": 0.0,
 
 
 
 
7
  "bos_token_id": 50256,
8
  "embd_pdrop": 0.0,
9
  "eos_token_id": 50256,
 
23
  "rope_scaling": null,
24
  "rope_theta": 10000.0,
25
  "tie_word_embeddings": false,
26
+ "transformers_version": "4.41.2",
 
27
  "use_cache": true,
28
  "vocab_size": 51200
29
  }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 50256,
4
+ "eos_token_id": 50256,
5
+ "transformers_version": "4.41.2"
6
+ }
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b0c6ffc786ee7a473759fba935b3da8422fab3080914106e37b35e5a5682e1b
3
+ size 558511
openvino_detokenizer.xml ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_252620" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_252620">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_252636" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_252523" type="Const" version="opset1">
29
+ <data element_type="u8" shape="558462" offset="0" size="558462" />
30
+ <output>
31
+ <port id="0" precision="U8">
32
+ <dim>558462</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="StringTensorUnpack_252524" type="StringTensorUnpack" version="extension">
37
+ <data mode="begins_ends" />
38
+ <input>
39
+ <port id="0" precision="U8">
40
+ <dim>558462</dim>
41
+ </port>
42
+ </input>
43
+ <output>
44
+ <port id="1" precision="I32">
45
+ <dim>-1</dim>
46
+ </port>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="U8">
51
+ <dim>-1</dim>
52
+ </port>
53
+ </output>
54
+ </layer>
55
+ <layer id="4" name="VocabDecoder_252621" type="VocabDecoder" version="extension">
56
+ <data skip_tokens="50256" />
57
+ <input>
58
+ <port id="0" precision="I32">
59
+ <dim>-1</dim>
60
+ <dim>-1</dim>
61
+ </port>
62
+ <port id="1" precision="I32">
63
+ <dim>-1</dim>
64
+ </port>
65
+ <port id="2" precision="I32">
66
+ <dim>-1</dim>
67
+ </port>
68
+ <port id="3" precision="U8">
69
+ <dim>-1</dim>
70
+ </port>
71
+ </input>
72
+ <output>
73
+ <port id="4" precision="I32">
74
+ <dim>-1</dim>
75
+ </port>
76
+ <port id="5" precision="I32">
77
+ <dim>-1</dim>
78
+ </port>
79
+ <port id="6" precision="I32">
80
+ <dim>-1</dim>
81
+ </port>
82
+ <port id="7" precision="I32">
83
+ <dim>-1</dim>
84
+ </port>
85
+ <port id="8" precision="U8">
86
+ <dim>-1</dim>
87
+ </port>
88
+ </output>
89
+ </layer>
90
+ <layer id="5" name="CharsToBytes_252622" type="CharsToBytes" version="extension">
91
+ <input>
92
+ <port id="0" precision="I32">
93
+ <dim>-1</dim>
94
+ </port>
95
+ <port id="1" precision="I32">
96
+ <dim>-1</dim>
97
+ </port>
98
+ <port id="2" precision="I32">
99
+ <dim>-1</dim>
100
+ </port>
101
+ <port id="3" precision="I32">
102
+ <dim>-1</dim>
103
+ </port>
104
+ <port id="4" precision="U8">
105
+ <dim>-1</dim>
106
+ </port>
107
+ </input>
108
+ <output>
109
+ <port id="5" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ <port id="6" precision="I32">
113
+ <dim>-1</dim>
114
+ </port>
115
+ <port id="7" precision="U8">
116
+ <dim>-1</dim>
117
+ </port>
118
+ </output>
119
+ </layer>
120
+ <layer id="6" name="Constant_252624" type="Const" version="opset1">
121
+ <data element_type="u8" shape="47" offset="558462" size="47" />
122
+ <output>
123
+ <port id="0" precision="U8">
124
+ <dim>47</dim>
125
+ </port>
126
+ </output>
127
+ </layer>
128
+ <layer id="7" name="Constant_252626" type="Const" version="opset1">
129
+ <data element_type="u8" shape="2" offset="558509" size="2" />
130
+ <output>
131
+ <port id="0" precision="U8">
132
+ <dim>2</dim>
133
+ </port>
134
+ </output>
135
+ </layer>
136
+ <layer id="8" name="RegexNormalization_252627" type="RegexNormalization" version="extension">
137
+ <data global_replace="true" />
138
+ <input>
139
+ <port id="0" precision="I32">
140
+ <dim>-1</dim>
141
+ </port>
142
+ <port id="1" precision="I32">
143
+ <dim>-1</dim>
144
+ </port>
145
+ <port id="2" precision="U8">
146
+ <dim>-1</dim>
147
+ </port>
148
+ <port id="3" precision="U8">
149
+ <dim>47</dim>
150
+ </port>
151
+ <port id="4" precision="U8">
152
+ <dim>2</dim>
153
+ </port>
154
+ </input>
155
+ <output>
156
+ <port id="5" precision="I32">
157
+ <dim>-1</dim>
158
+ </port>
159
+ <port id="6" precision="I32">
160
+ <dim>-1</dim>
161
+ </port>
162
+ <port id="7" precision="U8">
163
+ <dim>-1</dim>
164
+ </port>
165
+ </output>
166
+ </layer>
167
+ <layer id="9" name="StringTensorPack_252628" type="StringTensorPack" version="extension">
168
+ <data mode="begins_ends" />
169
+ <input>
170
+ <port id="0" precision="I32">
171
+ <dim>-1</dim>
172
+ </port>
173
+ <port id="1" precision="I32">
174
+ <dim>-1</dim>
175
+ </port>
176
+ <port id="2" precision="U8">
177
+ <dim>-1</dim>
178
+ </port>
179
+ </input>
180
+ <output>
181
+ <port id="3" precision="STRING" names="string_output">
182
+ <dim>-1</dim>
183
+ </port>
184
+ </output>
185
+ </layer>
186
+ <layer id="10" name="Result_252629" type="Result" version="opset1">
187
+ <input>
188
+ <port id="0" precision="STRING">
189
+ <dim>-1</dim>
190
+ </port>
191
+ </input>
192
+ </layer>
193
+ </layers>
194
+ <edges>
195
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
196
+ <edge from-layer="1" from-port="1" to-layer="4" to-port="0" />
197
+ <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
198
+ <edge from-layer="3" from-port="1" to-layer="4" to-port="1" />
199
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="2" />
200
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="3" />
201
+ <edge from-layer="4" from-port="8" to-layer="5" to-port="4" />
202
+ <edge from-layer="4" from-port="7" to-layer="5" to-port="3" />
203
+ <edge from-layer="4" from-port="6" to-layer="5" to-port="2" />
204
+ <edge from-layer="4" from-port="5" to-layer="5" to-port="1" />
205
+ <edge from-layer="4" from-port="4" to-layer="5" to-port="0" />
206
+ <edge from-layer="5" from-port="5" to-layer="8" to-port="0" />
207
+ <edge from-layer="5" from-port="6" to-layer="8" to-port="1" />
208
+ <edge from-layer="5" from-port="7" to-layer="8" to-port="2" />
209
+ <edge from-layer="6" from-port="0" to-layer="8" to-port="3" />
210
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="4" />
211
+ <edge from-layer="8" from-port="5" to-layer="9" to-port="0" />
212
+ <edge from-layer="8" from-port="6" to-layer="9" to-port="1" />
213
+ <edge from-layer="8" from-port="7" to-layer="9" to-port="2" />
214
+ <edge from-layer="9" from-port="3" to-layer="10" to-port="0" />
215
+ </edges>
216
+ <rt_info>
217
+ <eos_token_id value="50256" />
218
+ </rt_info>
219
+ </net>
openvino_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0a789f1a30fe19e4098756f783425e1b0f3abe1bd65f024939d7e0e948e406b
3
- size 1562241337
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28d1feb6bf8f3659320c350c5167cd43576a574df1f63859db99704ecbf4fea4
3
+ size 1823610756
openvino_model.xml CHANGED
The diff for this file is too large to render. See raw diff
 
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203881aa28a3952d83a6573c99d86b90b7f36c0880ba7f0acdf468692564bb5b
3
+ size 1166828
openvino_tokenizer.xml ADDED
@@ -0,0 +1,867 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_252436" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_252436">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_252442" type="Const" version="opset1">
13
+ <data element_type="i64" shape="" offset="0" size="8" />
14
+ <output>
15
+ <port id="0" precision="I64" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="StringTensorUnpack_252437" type="StringTensorUnpack" version="extension">
19
+ <data mode="begins_ends" />
20
+ <input>
21
+ <port id="0" precision="STRING">
22
+ <dim>-1</dim>
23
+ </port>
24
+ </input>
25
+ <output>
26
+ <port id="1" precision="I32">
27
+ <dim>-1</dim>
28
+ </port>
29
+ <port id="2" precision="I32">
30
+ <dim>-1</dim>
31
+ </port>
32
+ <port id="3" precision="U8">
33
+ <dim>-1</dim>
34
+ </port>
35
+ </output>
36
+ </layer>
37
+ <layer id="3" name="ShapeOf_252438" type="ShapeOf" version="opset3">
38
+ <data output_type="i64" />
39
+ <input>
40
+ <port id="0" precision="I32">
41
+ <dim>-1</dim>
42
+ </port>
43
+ </input>
44
+ <output>
45
+ <port id="1" precision="I64">
46
+ <dim>1</dim>
47
+ </port>
48
+ </output>
49
+ </layer>
50
+ <layer id="4" name="Constant_252439" type="Const" version="opset1">
51
+ <data element_type="i64" shape="" offset="0" size="8" />
52
+ <output>
53
+ <port id="0" precision="I64" />
54
+ </output>
55
+ </layer>
56
+ <layer id="5" name="Constant_252440" type="Const" version="opset1">
57
+ <data element_type="i64" shape="" offset="0" size="8" />
58
+ <output>
59
+ <port id="0" precision="I64" />
60
+ </output>
61
+ </layer>
62
+ <layer id="6" name="Gather_252441" type="Gather" version="opset8">
63
+ <data batch_dims="0" />
64
+ <input>
65
+ <port id="0" precision="I64">
66
+ <dim>1</dim>
67
+ </port>
68
+ <port id="1" precision="I64" />
69
+ <port id="2" precision="I64" />
70
+ </input>
71
+ <output>
72
+ <port id="3" precision="I64" />
73
+ </output>
74
+ </layer>
75
+ <layer id="7" name="Constant_252443" type="Const" version="opset1">
76
+ <data element_type="i64" shape="" offset="8" size="8" />
77
+ <output>
78
+ <port id="0" precision="I64" />
79
+ </output>
80
+ </layer>
81
+ <layer id="8" name="Range_252444" type="Range" version="opset4">
82
+ <data output_type="i32" />
83
+ <input>
84
+ <port id="0" precision="I64" />
85
+ <port id="1" precision="I64" />
86
+ <port id="2" precision="I64" />
87
+ </input>
88
+ <output>
89
+ <port id="3" precision="I32">
90
+ <dim>-1</dim>
91
+ </port>
92
+ </output>
93
+ </layer>
94
+ <layer id="9" name="Constant_252446" type="Const" version="opset1">
95
+ <data element_type="i64" shape="" offset="8" size="8" />
96
+ <output>
97
+ <port id="0" precision="I64" />
98
+ </output>
99
+ </layer>
100
+ <layer id="10" name="Constant_252447" type="Const" version="opset1">
101
+ <data element_type="i64" shape="" offset="8" size="8" />
102
+ <output>
103
+ <port id="0" precision="I64" />
104
+ </output>
105
+ </layer>
106
+ <layer id="11" name="Add_252448" type="Add" version="opset1">
107
+ <data auto_broadcast="numpy" />
108
+ <input>
109
+ <port id="0" precision="I64" />
110
+ <port id="1" precision="I64" />
111
+ </input>
112
+ <output>
113
+ <port id="2" precision="I64" />
114
+ </output>
115
+ </layer>
116
+ <layer id="12" name="Constant_252449" type="Const" version="opset1">
117
+ <data element_type="i64" shape="" offset="8" size="8" />
118
+ <output>
119
+ <port id="0" precision="I64" />
120
+ </output>
121
+ </layer>
122
+ <layer id="13" name="Range_252450" type="Range" version="opset4">
123
+ <data output_type="i32" />
124
+ <input>
125
+ <port id="0" precision="I64" />
126
+ <port id="1" precision="I64" />
127
+ <port id="2" precision="I64" />
128
+ </input>
129
+ <output>
130
+ <port id="3" precision="I32">
131
+ <dim>-1</dim>
132
+ </port>
133
+ </output>
134
+ </layer>
135
+ <layer id="14" name="Constant_252513" type="Const" version="opset1">
136
+ <data element_type="u8" shape="1115" offset="16" size="1115" />
137
+ <output>
138
+ <port id="0" precision="U8">
139
+ <dim>1115</dim>
140
+ </port>
141
+ </output>
142
+ </layer>
143
+ <layer id="15" name="RegexSplit_252514" type="RegexSplit" version="extension">
144
+ <data behaviour="isolate" invert="false" max_splits="-1" />
145
+ <input>
146
+ <port id="0" precision="I32">
147
+ <dim>-1</dim>
148
+ </port>
149
+ <port id="1" precision="I32">
150
+ <dim>-1</dim>
151
+ </port>
152
+ <port id="2" precision="I32">
153
+ <dim>-1</dim>
154
+ </port>
155
+ <port id="3" precision="I32">
156
+ <dim>-1</dim>
157
+ </port>
158
+ <port id="4" precision="U8">
159
+ <dim>-1</dim>
160
+ </port>
161
+ <port id="5" precision="U8">
162
+ <dim>1115</dim>
163
+ </port>
164
+ </input>
165
+ <output>
166
+ <port id="6" precision="I32">
167
+ <dim>-1</dim>
168
+ </port>
169
+ <port id="7" precision="I32">
170
+ <dim>-1</dim>
171
+ </port>
172
+ <port id="8" precision="I32">
173
+ <dim>-1</dim>
174
+ </port>
175
+ <port id="9" precision="I32">
176
+ <dim>-1</dim>
177
+ </port>
178
+ <port id="10" precision="U8">
179
+ <dim>-1</dim>
180
+ </port>
181
+ </output>
182
+ </layer>
183
+ <layer id="16" name="Constant_252519" type="Const" version="opset1">
184
+ <data element_type="u8" shape="64" offset="1131" size="64" />
185
+ <output>
186
+ <port id="0" precision="U8">
187
+ <dim>64</dim>
188
+ </port>
189
+ </output>
190
+ </layer>
191
+ <layer id="17" name="Constant_252516" type="Const" version="opset1">
192
+ <data element_type="u8" shape="699" offset="1195" size="699" />
193
+ <output>
194
+ <port id="0" precision="U8">
195
+ <dim>699</dim>
196
+ </port>
197
+ </output>
198
+ </layer>
199
+ <layer id="18" name="StringTensorUnpack_252517" type="StringTensorUnpack" version="extension">
200
+ <data mode="begins_ends" />
201
+ <input>
202
+ <port id="0" precision="U8">
203
+ <dim>699</dim>
204
+ </port>
205
+ </input>
206
+ <output>
207
+ <port id="1" precision="I32">
208
+ <dim>-1</dim>
209
+ </port>
210
+ <port id="2" precision="I32">
211
+ <dim>-1</dim>
212
+ </port>
213
+ <port id="3" precision="U8">
214
+ <dim>-1</dim>
215
+ </port>
216
+ </output>
217
+ </layer>
218
+ <layer id="19" name="RegexSplit_252520" type="RegexSplit" version="extension">
219
+ <data behaviour="isolate" invert="false" max_splits="-1" />
220
+ <input>
221
+ <port id="0" precision="I32">
222
+ <dim>-1</dim>
223
+ </port>
224
+ <port id="1" precision="I32">
225
+ <dim>-1</dim>
226
+ </port>
227
+ <port id="2" precision="I32">
228
+ <dim>-1</dim>
229
+ </port>
230
+ <port id="3" precision="I32">
231
+ <dim>-1</dim>
232
+ </port>
233
+ <port id="4" precision="U8">
234
+ <dim>-1</dim>
235
+ </port>
236
+ <port id="5" precision="U8">
237
+ <dim>64</dim>
238
+ </port>
239
+ <port id="6" precision="I32">
240
+ <dim>-1</dim>
241
+ </port>
242
+ <port id="7" precision="I32">
243
+ <dim>-1</dim>
244
+ </port>
245
+ <port id="8" precision="U8">
246
+ <dim>-1</dim>
247
+ </port>
248
+ </input>
249
+ <output>
250
+ <port id="9" precision="I32">
251
+ <dim>-1</dim>
252
+ </port>
253
+ <port id="10" precision="I32">
254
+ <dim>-1</dim>
255
+ </port>
256
+ <port id="11" precision="I32">
257
+ <dim>-1</dim>
258
+ </port>
259
+ <port id="12" precision="I32">
260
+ <dim>-1</dim>
261
+ </port>
262
+ <port id="13" precision="U8">
263
+ <dim>-1</dim>
264
+ </port>
265
+ </output>
266
+ </layer>
267
+ <layer id="20" name="BytesToChars_252521" type="BytesToChars" version="extension">
268
+ <input>
269
+ <port id="0" precision="I32">
270
+ <dim>-1</dim>
271
+ </port>
272
+ <port id="1" precision="I32">
273
+ <dim>-1</dim>
274
+ </port>
275
+ <port id="2" precision="I32">
276
+ <dim>-1</dim>
277
+ </port>
278
+ <port id="3" precision="I32">
279
+ <dim>-1</dim>
280
+ </port>
281
+ <port id="4" precision="U8">
282
+ <dim>-1</dim>
283
+ </port>
284
+ </input>
285
+ <output>
286
+ <port id="5" precision="I32">
287
+ <dim>-1</dim>
288
+ </port>
289
+ <port id="6" precision="I32">
290
+ <dim>-1</dim>
291
+ </port>
292
+ <port id="7" precision="I32">
293
+ <dim>-1</dim>
294
+ </port>
295
+ <port id="8" precision="I32">
296
+ <dim>-1</dim>
297
+ </port>
298
+ <port id="9" precision="U8">
299
+ <dim>-1</dim>
300
+ </port>
301
+ </output>
302
+ </layer>
303
+ <layer id="21" name="Constant_252523" type="Const" version="opset1">
304
+ <data element_type="u8" shape="558462" offset="1894" size="558462" />
305
+ <output>
306
+ <port id="0" precision="U8">
307
+ <dim>558462</dim>
308
+ </port>
309
+ </output>
310
+ </layer>
311
+ <layer id="22" name="StringTensorUnpack_252524" type="StringTensorUnpack" version="extension">
312
+ <data mode="begins_ends" />
313
+ <input>
314
+ <port id="0" precision="U8">
315
+ <dim>558462</dim>
316
+ </port>
317
+ </input>
318
+ <output>
319
+ <port id="1" precision="I32">
320
+ <dim>-1</dim>
321
+ </port>
322
+ <port id="2" precision="I32">
323
+ <dim>-1</dim>
324
+ </port>
325
+ <port id="3" precision="U8">
326
+ <dim>-1</dim>
327
+ </port>
328
+ </output>
329
+ </layer>
330
+ <layer id="23" name="Constant_252604" type="Const" version="opset1">
331
+ <data element_type="u8" shape="606312" offset="560356" size="606312" />
332
+ <output>
333
+ <port id="0" precision="U8">
334
+ <dim>606312</dim>
335
+ </port>
336
+ </output>
337
+ </layer>
338
+ <layer id="24" name="StringTensorUnpack_252605" type="StringTensorUnpack" version="extension">
339
+ <data mode="begins_ends" />
340
+ <input>
341
+ <port id="0" precision="U8">
342
+ <dim>606312</dim>
343
+ </port>
344
+ </input>
345
+ <output>
346
+ <port id="1" precision="I32">
347
+ <dim>-1</dim>
348
+ </port>
349
+ <port id="2" precision="I32">
350
+ <dim>-1</dim>
351
+ </port>
352
+ <port id="3" precision="U8">
353
+ <dim>-1</dim>
354
+ </port>
355
+ </output>
356
+ </layer>
357
+ <layer id="25" name="Constant_252532" type="Const" version="opset1">
358
+ <data element_type="i64" shape="" offset="0" size="8" />
359
+ <output>
360
+ <port id="0" precision="I64" />
361
+ </output>
362
+ </layer>
363
+ <layer id="26" name="Constant_252526" type="Const" version="opset1">
364
+ <data element_type="u8" shape="699" offset="1195" size="699" />
365
+ <output>
366
+ <port id="0" precision="U8">
367
+ <dim>699</dim>
368
+ </port>
369
+ </output>
370
+ </layer>
371
+ <layer id="27" name="StringTensorUnpack_252527" type="StringTensorUnpack" version="extension">
372
+ <data mode="begins_ends" />
373
+ <input>
374
+ <port id="0" precision="U8">
375
+ <dim>699</dim>
376
+ </port>
377
+ </input>
378
+ <output>
379
+ <port id="1" precision="I32">
380
+ <dim>-1</dim>
381
+ </port>
382
+ <port id="2" precision="I32">
383
+ <dim>-1</dim>
384
+ </port>
385
+ <port id="3" precision="U8">
386
+ <dim>-1</dim>
387
+ </port>
388
+ </output>
389
+ </layer>
390
+ <layer id="28" name="ShapeOf_252528" type="ShapeOf" version="opset3">
391
+ <data output_type="i64" />
392
+ <input>
393
+ <port id="0" precision="I32">
394
+ <dim>-1</dim>
395
+ </port>
396
+ </input>
397
+ <output>
398
+ <port id="1" precision="I64">
399
+ <dim>1</dim>
400
+ </port>
401
+ </output>
402
+ </layer>
403
+ <layer id="29" name="Constant_252529" type="Const" version="opset1">
404
+ <data element_type="i64" shape="" offset="0" size="8" />
405
+ <output>
406
+ <port id="0" precision="I64" />
407
+ </output>
408
+ </layer>
409
+ <layer id="30" name="Constant_252530" type="Const" version="opset1">
410
+ <data element_type="i64" shape="" offset="0" size="8" />
411
+ <output>
412
+ <port id="0" precision="I64" />
413
+ </output>
414
+ </layer>
415
+ <layer id="31" name="Gather_252531" type="Gather" version="opset8">
416
+ <data batch_dims="0" />
417
+ <input>
418
+ <port id="0" precision="I64">
419
+ <dim>1</dim>
420
+ </port>
421
+ <port id="1" precision="I64" />
422
+ <port id="2" precision="I64" />
423
+ </input>
424
+ <output>
425
+ <port id="3" precision="I64" />
426
+ </output>
427
+ </layer>
428
+ <layer id="32" name="Constant_252533" type="Const" version="opset1">
429
+ <data element_type="i64" shape="" offset="8" size="8" />
430
+ <output>
431
+ <port id="0" precision="I64" />
432
+ </output>
433
+ </layer>
434
+ <layer id="33" name="Range_252534" type="Range" version="opset4">
435
+ <data output_type="i32" />
436
+ <input>
437
+ <port id="0" precision="I64" />
438
+ <port id="1" precision="I64" />
439
+ <port id="2" precision="I64" />
440
+ </input>
441
+ <output>
442
+ <port id="3" precision="I32">
443
+ <dim>-1</dim>
444
+ </port>
445
+ </output>
446
+ </layer>
447
+ <layer id="34" name="Constant_252536" type="Const" version="opset1">
448
+ <data element_type="i64" shape="" offset="8" size="8" />
449
+ <output>
450
+ <port id="0" precision="I64" />
451
+ </output>
452
+ </layer>
453
+ <layer id="35" name="Constant_252537" type="Const" version="opset1">
454
+ <data element_type="i64" shape="" offset="8" size="8" />
455
+ <output>
456
+ <port id="0" precision="I64" />
457
+ </output>
458
+ </layer>
459
+ <layer id="36" name="Add_252538" type="Add" version="opset1">
460
+ <data auto_broadcast="numpy" />
461
+ <input>
462
+ <port id="0" precision="I64" />
463
+ <port id="1" precision="I64" />
464
+ </input>
465
+ <output>
466
+ <port id="2" precision="I64" />
467
+ </output>
468
+ </layer>
469
+ <layer id="37" name="Constant_252539" type="Const" version="opset1">
470
+ <data element_type="i64" shape="" offset="8" size="8" />
471
+ <output>
472
+ <port id="0" precision="I64" />
473
+ </output>
474
+ </layer>
475
+ <layer id="38" name="Range_252540" type="Range" version="opset4">
476
+ <data output_type="i32" />
477
+ <input>
478
+ <port id="0" precision="I64" />
479
+ <port id="1" precision="I64" />
480
+ <port id="2" precision="I64" />
481
+ </input>
482
+ <output>
483
+ <port id="3" precision="I32">
484
+ <dim>-1</dim>
485
+ </port>
486
+ </output>
487
+ </layer>
488
+ <layer id="39" name="BytesToChars_252602" type="BytesToChars" version="extension">
489
+ <input>
490
+ <port id="0" precision="I32">
491
+ <dim>-1</dim>
492
+ </port>
493
+ <port id="1" precision="I32">
494
+ <dim>-1</dim>
495
+ </port>
496
+ <port id="2" precision="I32">
497
+ <dim>-1</dim>
498
+ </port>
499
+ <port id="3" precision="I32">
500
+ <dim>-1</dim>
501
+ </port>
502
+ <port id="4" precision="U8">
503
+ <dim>-1</dim>
504
+ </port>
505
+ </input>
506
+ <output>
507
+ <port id="5" precision="I32">
508
+ <dim>-1</dim>
509
+ </port>
510
+ <port id="6" precision="I32">
511
+ <dim>-1</dim>
512
+ </port>
513
+ <port id="7" precision="I32">
514
+ <dim>-1</dim>
515
+ </port>
516
+ <port id="8" precision="I32">
517
+ <dim>-1</dim>
518
+ </port>
519
+ <port id="9" precision="U8">
520
+ <dim>-1</dim>
521
+ </port>
522
+ </output>
523
+ </layer>
524
+ <layer id="40" name="Constant_252606" type="Const" version="opset1">
525
+ <data element_type="i32" shape="38" offset="1166668" size="152" />
526
+ <output>
527
+ <port id="0" precision="I32">
528
+ <dim>38</dim>
529
+ </port>
530
+ </output>
531
+ </layer>
532
+ <layer id="41" name="BPETokenizer_252607" type="BPETokenizer" version="extension">
533
+ <data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" />
534
+ <input>
535
+ <port id="0" precision="I32">
536
+ <dim>-1</dim>
537
+ </port>
538
+ <port id="1" precision="I32">
539
+ <dim>-1</dim>
540
+ </port>
541
+ <port id="2" precision="I32">
542
+ <dim>-1</dim>
543
+ </port>
544
+ <port id="3" precision="I32">
545
+ <dim>-1</dim>
546
+ </port>
547
+ <port id="4" precision="U8">
548
+ <dim>-1</dim>
549
+ </port>
550
+ <port id="5" precision="I32">
551
+ <dim>-1</dim>
552
+ </port>
553
+ <port id="6" precision="I32">
554
+ <dim>-1</dim>
555
+ </port>
556
+ <port id="7" precision="U8">
557
+ <dim>-1</dim>
558
+ </port>
559
+ <port id="8" precision="I32">
560
+ <dim>-1</dim>
561
+ </port>
562
+ <port id="9" precision="I32">
563
+ <dim>-1</dim>
564
+ </port>
565
+ <port id="10" precision="U8">
566
+ <dim>-1</dim>
567
+ </port>
568
+ <port id="11" precision="I32">
569
+ <dim>-1</dim>
570
+ </port>
571
+ <port id="12" precision="I32">
572
+ <dim>-1</dim>
573
+ </port>
574
+ <port id="13" precision="U8">
575
+ <dim>-1</dim>
576
+ </port>
577
+ <port id="14" precision="I32">
578
+ <dim>38</dim>
579
+ </port>
580
+ </input>
581
+ <output>
582
+ <port id="15" precision="I32">
583
+ <dim>-1</dim>
584
+ </port>
585
+ <port id="16" precision="I32">
586
+ <dim>-1</dim>
587
+ </port>
588
+ <port id="17" precision="I32">
589
+ <dim>-1</dim>
590
+ </port>
591
+ </output>
592
+ </layer>
593
+ <layer id="42" name="Subtract_252608" type="Subtract" version="opset1">
594
+ <data auto_broadcast="numpy" />
595
+ <input>
596
+ <port id="0" precision="I32">
597
+ <dim>-1</dim>
598
+ </port>
599
+ <port id="1" precision="I32">
600
+ <dim>-1</dim>
601
+ </port>
602
+ </input>
603
+ <output>
604
+ <port id="2" precision="I32">
605
+ <dim>-1</dim>
606
+ </port>
607
+ </output>
608
+ </layer>
609
+ <layer id="43" name="Constant_252609" type="Const" version="opset1">
610
+ <data element_type="i32" shape="" offset="1166820" size="4" />
611
+ <output>
612
+ <port id="0" precision="I32" />
613
+ </output>
614
+ </layer>
615
+ <layer id="44" name="Minimum_252610" type="Minimum" version="opset1">
616
+ <data auto_broadcast="numpy" />
617
+ <input>
618
+ <port id="0" precision="I32">
619
+ <dim>-1</dim>
620
+ </port>
621
+ <port id="1" precision="I32" />
622
+ </input>
623
+ <output>
624
+ <port id="2" precision="I32">
625
+ <dim>-1</dim>
626
+ </port>
627
+ </output>
628
+ </layer>
629
+ <layer id="45" name="Add_252611" type="Add" version="opset1">
630
+ <data auto_broadcast="numpy" />
631
+ <input>
632
+ <port id="0" precision="I32">
633
+ <dim>-1</dim>
634
+ </port>
635
+ <port id="1" precision="I32">
636
+ <dim>-1</dim>
637
+ </port>
638
+ </input>
639
+ <output>
640
+ <port id="2" precision="I32">
641
+ <dim>-1</dim>
642
+ </port>
643
+ </output>
644
+ </layer>
645
+ <layer id="46" name="Subtract_252612" type="Subtract" version="opset1">
646
+ <data auto_broadcast="numpy" />
647
+ <input>
648
+ <port id="0" precision="I32">
649
+ <dim>-1</dim>
650
+ </port>
651
+ <port id="1" precision="I32">
652
+ <dim>-1</dim>
653
+ </port>
654
+ </input>
655
+ <output>
656
+ <port id="2" precision="I32">
657
+ <dim>-1</dim>
658
+ </port>
659
+ </output>
660
+ </layer>
661
+ <layer id="47" name="Constant_252613" type="Const" version="opset1">
662
+ <data element_type="i32" shape="" offset="1166824" size="4" />
663
+ <output>
664
+ <port id="0" precision="I32" />
665
+ </output>
666
+ </layer>
667
+ <layer id="48" name="ReduceMax_252614" type="ReduceMax" version="opset1">
668
+ <data keep_dims="false" />
669
+ <input>
670
+ <port id="0" precision="I32">
671
+ <dim>-1</dim>
672
+ </port>
673
+ <port id="1" precision="I32" />
674
+ </input>
675
+ <output>
676
+ <port id="2" precision="I32" />
677
+ </output>
678
+ </layer>
679
+ <layer id="49" name="Constant_252615" type="Const" version="opset1">
680
+ <data element_type="i32" shape="" offset="1166824" size="4" />
681
+ <output>
682
+ <port id="0" precision="I32" />
683
+ </output>
684
+ </layer>
685
+ <layer id="50" name="RaggedToDense_252616" type="RaggedToDense" version="extension">
686
+ <data pad_right="true" />
687
+ <input>
688
+ <port id="0" precision="I32">
689
+ <dim>-1</dim>
690
+ </port>
691
+ <port id="1" precision="I32">
692
+ <dim>-1</dim>
693
+ </port>
694
+ <port id="2" precision="I32">
695
+ <dim>-1</dim>
696
+ </port>
697
+ <port id="3" precision="I32" />
698
+ <port id="4" precision="I32" />
699
+ </input>
700
+ <output>
701
+ <port id="5" precision="I32">
702
+ <dim>-1</dim>
703
+ <dim>-1</dim>
704
+ </port>
705
+ <port id="6" precision="BOOL">
706
+ <dim>-1</dim>
707
+ <dim>-1</dim>
708
+ </port>
709
+ </output>
710
+ </layer>
711
+ <layer id="51" name="Convert_252617" type="Convert" version="opset1">
712
+ <data destination_type="i32" />
713
+ <input>
714
+ <port id="0" precision="BOOL">
715
+ <dim>-1</dim>
716
+ <dim>-1</dim>
717
+ </port>
718
+ </input>
719
+ <output>
720
+ <port id="1" precision="I32">
721
+ <dim>-1</dim>
722
+ <dim>-1</dim>
723
+ </port>
724
+ </output>
725
+ </layer>
726
+ <layer id="52" name="Convert_252617" type="Convert" version="opset1">
727
+ <data destination_type="i64" />
728
+ <input>
729
+ <port id="0" precision="I32">
730
+ <dim>-1</dim>
731
+ <dim>-1</dim>
732
+ </port>
733
+ </input>
734
+ <output>
735
+ <port id="1" precision="I64" names="attention_mask">
736
+ <dim>-1</dim>
737
+ <dim>-1</dim>
738
+ </port>
739
+ </output>
740
+ </layer>
741
+ <layer id="54" name="RaggedToDense_252616.0" type="Convert" version="opset1">
742
+ <data destination_type="i64" />
743
+ <input>
744
+ <port id="0" precision="I32">
745
+ <dim>-1</dim>
746
+ <dim>-1</dim>
747
+ </port>
748
+ </input>
749
+ <output>
750
+ <port id="1" precision="I64" names="input_ids">
751
+ <dim>-1</dim>
752
+ <dim>-1</dim>
753
+ </port>
754
+ </output>
755
+ </layer>
756
+ <layer id="55" name="Result_252618" type="Result" version="opset1">
757
+ <input>
758
+ <port id="0" precision="I64">
759
+ <dim>-1</dim>
760
+ <dim>-1</dim>
761
+ </port>
762
+ </input>
763
+ </layer>
764
+ <layer id="53" name="Result_252619" type="Result" version="opset1">
765
+ <input>
766
+ <port id="0" precision="I64">
767
+ <dim>-1</dim>
768
+ <dim>-1</dim>
769
+ </port>
770
+ </input>
771
+ </layer>
772
+ </layers>
773
+ <edges>
774
+ <edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
775
+ <edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
776
+ <edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
777
+ <edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
778
+ <edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
779
+ <edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
780
+ <edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
781
+ <edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
782
+ <edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
783
+ <edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
784
+ <edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
785
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
786
+ <edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
787
+ <edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
788
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
789
+ <edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
790
+ <edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
791
+ <edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
792
+ <edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
793
+ <edge from-layer="15" from-port="6" to-layer="19" to-port="0" />
794
+ <edge from-layer="15" from-port="7" to-layer="19" to-port="1" />
795
+ <edge from-layer="15" from-port="8" to-layer="19" to-port="2" />
796
+ <edge from-layer="15" from-port="9" to-layer="19" to-port="3" />
797
+ <edge from-layer="15" from-port="10" to-layer="19" to-port="4" />
798
+ <edge from-layer="16" from-port="0" to-layer="19" to-port="5" />
799
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="0" />
800
+ <edge from-layer="18" from-port="3" to-layer="19" to-port="8" />
801
+ <edge from-layer="18" from-port="1" to-layer="19" to-port="6" />
802
+ <edge from-layer="18" from-port="2" to-layer="19" to-port="7" />
803
+ <edge from-layer="19" from-port="9" to-layer="20" to-port="0" />
804
+ <edge from-layer="19" from-port="10" to-layer="20" to-port="1" />
805
+ <edge from-layer="19" from-port="11" to-layer="20" to-port="2" />
806
+ <edge from-layer="19" from-port="12" to-layer="20" to-port="3" />
807
+ <edge from-layer="19" from-port="13" to-layer="20" to-port="4" />
808
+ <edge from-layer="20" from-port="6" to-layer="41" to-port="1" />
809
+ <edge from-layer="20" from-port="9" to-layer="41" to-port="4" />
810
+ <edge from-layer="20" from-port="8" to-layer="41" to-port="3" />
811
+ <edge from-layer="20" from-port="5" to-layer="41" to-port="0" />
812
+ <edge from-layer="20" from-port="7" to-layer="41" to-port="2" />
813
+ <edge from-layer="21" from-port="0" to-layer="22" to-port="0" />
814
+ <edge from-layer="22" from-port="1" to-layer="41" to-port="5" />
815
+ <edge from-layer="22" from-port="2" to-layer="41" to-port="6" />
816
+ <edge from-layer="22" from-port="3" to-layer="41" to-port="7" />
817
+ <edge from-layer="23" from-port="0" to-layer="24" to-port="0" />
818
+ <edge from-layer="24" from-port="3" to-layer="41" to-port="10" />
819
+ <edge from-layer="24" from-port="1" to-layer="41" to-port="8" />
820
+ <edge from-layer="24" from-port="2" to-layer="41" to-port="9" />
821
+ <edge from-layer="25" from-port="0" to-layer="33" to-port="0" />
822
+ <edge from-layer="26" from-port="0" to-layer="27" to-port="0" />
823
+ <edge from-layer="27" from-port="1" to-layer="39" to-port="2" />
824
+ <edge from-layer="27" from-port="2" to-layer="39" to-port="3" />
825
+ <edge from-layer="27" from-port="3" to-layer="39" to-port="4" />
826
+ <edge from-layer="27" from-port="1" to-layer="28" to-port="0" />
827
+ <edge from-layer="28" from-port="1" to-layer="31" to-port="0" />
828
+ <edge from-layer="29" from-port="0" to-layer="31" to-port="1" />
829
+ <edge from-layer="30" from-port="0" to-layer="31" to-port="2" />
830
+ <edge from-layer="31" from-port="3" to-layer="36" to-port="0" />
831
+ <edge from-layer="31" from-port="3" to-layer="33" to-port="1" />
832
+ <edge from-layer="32" from-port="0" to-layer="33" to-port="2" />
833
+ <edge from-layer="33" from-port="3" to-layer="39" to-port="0" />
834
+ <edge from-layer="34" from-port="0" to-layer="38" to-port="0" />
835
+ <edge from-layer="35" from-port="0" to-layer="36" to-port="1" />
836
+ <edge from-layer="36" from-port="2" to-layer="38" to-port="1" />
837
+ <edge from-layer="37" from-port="0" to-layer="38" to-port="2" />
838
+ <edge from-layer="38" from-port="3" to-layer="39" to-port="1" />
839
+ <edge from-layer="39" from-port="7" to-layer="41" to-port="11" />
840
+ <edge from-layer="39" from-port="8" to-layer="41" to-port="12" />
841
+ <edge from-layer="39" from-port="9" to-layer="41" to-port="13" />
842
+ <edge from-layer="40" from-port="0" to-layer="41" to-port="14" />
843
+ <edge from-layer="41" from-port="15" to-layer="45" to-port="0" />
844
+ <edge from-layer="41" from-port="17" to-layer="50" to-port="2" />
845
+ <edge from-layer="41" from-port="15" to-layer="50" to-port="0" />
846
+ <edge from-layer="41" from-port="15" to-layer="46" to-port="1" />
847
+ <edge from-layer="41" from-port="15" to-layer="42" to-port="1" />
848
+ <edge from-layer="41" from-port="16" to-layer="42" to-port="0" />
849
+ <edge from-layer="42" from-port="2" to-layer="44" to-port="0" />
850
+ <edge from-layer="43" from-port="0" to-layer="44" to-port="1" />
851
+ <edge from-layer="44" from-port="2" to-layer="45" to-port="1" />
852
+ <edge from-layer="45" from-port="2" to-layer="46" to-port="0" />
853
+ <edge from-layer="45" from-port="2" to-layer="50" to-port="1" />
854
+ <edge from-layer="46" from-port="2" to-layer="48" to-port="0" />
855
+ <edge from-layer="47" from-port="0" to-layer="48" to-port="1" />
856
+ <edge from-layer="48" from-port="2" to-layer="50" to-port="3" />
857
+ <edge from-layer="49" from-port="0" to-layer="50" to-port="4" />
858
+ <edge from-layer="50" from-port="6" to-layer="51" to-port="0" />
859
+ <edge from-layer="50" from-port="5" to-layer="54" to-port="0" />
860
+ <edge from-layer="51" from-port="1" to-layer="52" to-port="0" />
861
+ <edge from-layer="52" from-port="1" to-layer="53" to-port="0" />
862
+ <edge from-layer="54" from-port="1" to-layer="55" to-port="0" />
863
+ </edges>
864
+ <rt_info>
865
+ <eos_token_id value="50256" />
866
+ </rt_info>
867
+ </net>