|
|
|
|
|
import tensorflow as tf |
|
import numpy as np |
|
import os |
|
import random |
|
|
|
|
|
class DataProcessor: |
|
def __init__(self, data_dir): |
|
self.data_dir = data_dir |
|
self.text_data = [] |
|
self.image_data = [] |
|
self.audio_data = [] |
|
self.load_data() |
|
|
|
def load_data(self): |
|
|
|
text_files = os.listdir(os.path.join(self.data_dir, 'text')) |
|
for file in text_files: |
|
with open(os.path.join(self.data_dir, 'text', file), 'r') as f: |
|
self.text_data.extend(f.readlines()) |
|
|
|
|
|
image_files = os.listdir(os.path.join(self.data_dir, 'images')) |
|
for file in image_files: |
|
self.image_data.append(os.path.join(self.data_dir, 'images', file)) |
|
|
|
|
|
audio_files = os.listdir(os.path.join(self.data_dir, 'audio')) |
|
for file in audio_files: |
|
self.audio_data.append(os.path.join(self.data_dir, 'audio', file)) |
|
|
|
def get_batch(self, batch_size): |
|
|
|
text_batch = random.sample(self.text_data, batch_size) |
|
image_batch = random.sample(self.image_data, batch_size) |
|
audio_batch = random.sample(self.audio_data, batch_size) |
|
|
|
return text_batch, image_batch, audio_batch |
|
|
|
|
|
class HybridLearningEngine: |
|
def __init__(self, data_processor): |
|
self.data_processor = data_processor |
|
self.model = self.build_model() |
|
|
|
def build_model(self): |
|
|
|
|
|
|
|
|
|
|
|
return model |
|
|
|
def train(self, epochs, batch_size): |
|
for epoch in range(epochs): |
|
text_batch, image_batch, audio_batch = self.data_processor.get_batch(batch_size) |
|
|
|
|
|
|
|
|
|
|
|
class AttentionMechanism: |
|
def __init__(self): |
|
self.traditional_attention = TraditionalAttention() |
|
self.self_attention = SelfAttention() |
|
self.linear_attention = LinearAttention() |
|
|
|
def apply_attention(self, inputs): |
|
|
|
|
|
|
|
return attended_inputs |
|
|
|
|
|
class BeliefDesireIntentTree: |
|
def __init__(self): |
|
self.root = None |
|
|
|
def build_tree(self, inputs): |
|
|
|
|
|
|
|
return self.root |
|
|
|
|
|
class CSUMLM: |
|
def __init__(self, data_dir): |
|
self.data_processor = DataProcessor(data_dir) |
|
self.learning_engine = HybridLearningEngine(self.data_processor) |
|
self.attention_mechanism = AttentionMechanism() |
|
self.belief_desire_intent_tree = BeliefDesireIntentTree() |
|
|
|
def train(self, epochs, batch_size): |
|
self.learning_engine.train(epochs, batch_size) |
|
|
|
def process_input(self, inputs): |
|
|
|
|
|
|
|
|
|
attended_inputs = self.attention_mechanism.apply_attention(inputs) |
|
|
|
|
|
belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs) |
|
|
|
|
|
|
|
|
|
return output |
|
|
|
|
|
class RealtimeLearningMechanism: |
|
def __init__(self, model): |
|
self.model = model |
|
|
|
def update_model(self, new_data): |
|
|
|
|
|
|
|
|
|
class DynamicKnowledgeBase: |
|
def __init__(self): |
|
self.knowledge_base = {} |
|
|
|
def update_knowledge_base(self, new_knowledge): |
|
|
|
|
|
|
|
|
|
class Explainer: |
|
def __init__(self, model): |
|
self.model = model |
|
|
|
def explain_prediction(self, inputs): |
|
|
|
|
|
|
|
return explanation |
|
|
|
|
|
class IRAGEL: |
|
def __init__(self, model, knowledge_base): |
|
self.model = model |
|
self.knowledge_base = knowledge_base |
|
|
|
def retrieve_or_generate(self, inputs): |
|
|
|
|
|
|
|
return augmented_inputs |
|
|
|
def reflect_and_improve(self, inputs, outputs): |
|
|
|
|
|
|
|
return improved_outputs |
|
|
|
def self_train(self, inputs, outputs): |
|
|
|
|
|
|
|
|
|
class CSUMLM: |
|
def __init__(self, data_dir): |
|
self.data_processor = DataProcessor(data_dir) |
|
self.learning_engine = HybridLearningEngine(self.data_processor) |
|
self.attention_mechanism = AttentionMechanism() |
|
self.belief_desire_intent_tree = BeliefDesireIntentTree() |
|
self.realtime_learning_mechanism = RealtimeLearningMechanism(self.learning_engine.model) |
|
self.knowledge_base = DynamicKnowledgeBase() |
|
self.explainer = Explainer(self.learning_engine.model) |
|
self.iragel = IRAGEL(self.learning_engine.model, self.knowledge_base) |
|
|
|
def train(self, epochs, batch_size): |
|
self.learning_engine.train(epochs, batch_size) |
|
|
|
def process_input(self, inputs): |
|
|
|
|
|
|
|
|
|
attended_inputs = self.attention_mechanism.apply_attention(inputs) |
|
|
|
|
|
belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs) |
|
|
|
|
|
augmented_inputs = self.iragel.retrieve_or_generate(attended_inputs) |
|
|
|
|
|
outputs = self.learning_engine.model(augmented_inputs, belief_desire_intent_tree) |
|
|
|
|
|
improved_outputs = self.iragel.reflect_and_improve(augmented_inputs, outputs) |
|
|
|
|
|
explanation = self.explainer.explain_prediction(improved_outputs) |
|
|
|
|
|
self.knowledge_base.update_knowledge_base(new_knowledge) |
|
self.realtime_learning_mechanism.update_model(new_data) |
|
|
|
|
|
self.iragel.self_train(augmented_inputs, improved_outputs) |
|
|
|
return improved_outputs, explanation |