CSUMLM / csumlm.py
Or4cl3-1's picture
Create csumlm.py
0a1f733 verified
# CognoSphere Unified Multimodal Language Model (CSUMLM)
import tensorflow as tf
import numpy as np
import os
import random
# Data Processing
class DataProcessor:
def __init__(self, data_dir):
self.data_dir = data_dir
self.text_data = []
self.image_data = []
self.audio_data = []
self.load_data()
def load_data(self):
# Load text data
text_files = os.listdir(os.path.join(self.data_dir, 'text'))
for file in text_files:
with open(os.path.join(self.data_dir, 'text', file), 'r') as f:
self.text_data.extend(f.readlines())
# Load image data
image_files = os.listdir(os.path.join(self.data_dir, 'images'))
for file in image_files:
self.image_data.append(os.path.join(self.data_dir, 'images', file))
# Load audio data
audio_files = os.listdir(os.path.join(self.data_dir, 'audio'))
for file in audio_files:
self.audio_data.append(os.path.join(self.data_dir, 'audio', file))
def get_batch(self, batch_size):
# Randomly sample data from each modality
text_batch = random.sample(self.text_data, batch_size)
image_batch = random.sample(self.image_data, batch_size)
audio_batch = random.sample(self.audio_data, batch_size)
return text_batch, image_batch, audio_batch
# Hybrid Learning Engine
class HybridLearningEngine:
def __init__(self, data_processor):
self.data_processor = data_processor
self.model = self.build_model()
def build_model(self):
# Define the model architecture
# Combine transfer learning, deep learning, self-supervised learning, meta-learning,
# deep meta-learning, reinforcement learning, and cross-domain analogy extraction
# ...
return model
def train(self, epochs, batch_size):
for epoch in range(epochs):
text_batch, image_batch, audio_batch = self.data_processor.get_batch(batch_size)
# Train the model on the batch
# ...
# Advanced Attention Mechanism
class AttentionMechanism:
def __init__(self):
self.traditional_attention = TraditionalAttention()
self.self_attention = SelfAttention()
self.linear_attention = LinearAttention()
def apply_attention(self, inputs):
# Combine traditional attention, self-attention, and linear attention
# ...
return attended_inputs
# Hierarchical Belief Desire Intent Tree/Chain of Thought Structure
class BeliefDesireIntentTree:
def __init__(self):
self.root = None
def build_tree(self, inputs):
# Construct the Belief Desire Intent Tree/Chain of Thought Structure
# ...
return self.root
# Modular Python Architecture
class CSUMLM:
def __init__(self, data_dir):
self.data_processor = DataProcessor(data_dir)
self.learning_engine = HybridLearningEngine(self.data_processor)
self.attention_mechanism = AttentionMechanism()
self.belief_desire_intent_tree = BeliefDesireIntentTree()
def train(self, epochs, batch_size):
self.learning_engine.train(epochs, batch_size)
def process_input(self, inputs):
# Preprocess inputs
# ...
# Apply attention mechanism
attended_inputs = self.attention_mechanism.apply_attention(inputs)
# Build Belief Desire Intent Tree/Chain of Thought Structure
belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)
# Generate output based on the tree
# ...
return output
# Real-time Learning Mechanisms
class RealtimeLearningMechanism:
def __init__(self, model):
self.model = model
def update_model(self, new_data):
# Update the model with new data
# ...
# Dynamic Knowledge Base
class DynamicKnowledgeBase:
def __init__(self):
self.knowledge_base = {}
def update_knowledge_base(self, new_knowledge):
# Update the knowledge base with new linguistic and multimodal patterns
# ...
# Explainability and Transparency
class Explainer:
def __init__(self, model):
self.model = model
def explain_prediction(self, inputs):
# Generate explanations for model predictions and responses
# ...
return explanation
# Internal Retrieval Augmented Generation Enhanced Logic (I-RAGEL)
class IRAGEL:
def __init__(self, model, knowledge_base):
self.model = model
self.knowledge_base = knowledge_base
def retrieve_or_generate(self, inputs):
# Retrieve or generate additional linguistic and multimodal data
# ...
return augmented_inputs
def reflect_and_improve(self, inputs, outputs):
# Reflect on generated logic and improve decision-making processes
# ...
return improved_outputs
def self_train(self, inputs, outputs):
# Implement self-training for continuous performance enhancement
# ...
# Main CSUMLM Class
class CSUMLM:
def __init__(self, data_dir):
self.data_processor = DataProcessor(data_dir)
self.learning_engine = HybridLearningEngine(self.data_processor)
self.attention_mechanism = AttentionMechanism()
self.belief_desire_intent_tree = BeliefDesireIntentTree()
self.realtime_learning_mechanism = RealtimeLearningMechanism(self.learning_engine.model)
self.knowledge_base = DynamicKnowledgeBase()
self.explainer = Explainer(self.learning_engine.model)
self.iragel = IRAGEL(self.learning_engine.model, self.knowledge_base)
def train(self, epochs, batch_size):
self.learning_engine.train(epochs, batch_size)
def process_input(self, inputs):
# Preprocess inputs
# ...
# Apply attention mechanism
attended_inputs = self.attention_mechanism.apply_attention(inputs)
# Build Belief Desire Intent Tree/Chain of Thought Structure
belief_desire_intent_tree = self.belief_desire_intent_tree.build_tree(attended_inputs)
# Retrieve or generate additional data
augmented_inputs = self.iragel.retrieve_or_generate(attended_inputs)
# Generate output based on the tree and augmented inputs
outputs = self.learning_engine.model(augmented_inputs, belief_desire_intent_tree)
# Reflect and improve outputs
improved_outputs = self.iragel.reflect_and_improve(augmented_inputs, outputs)
# Explain predictions
explanation = self.explainer.explain_prediction(improved_outputs)
# Update knowledge base and model
self.knowledge_base.update_knowledge_base(new_knowledge)
self.realtime_learning_mechanism.update_model(new_data)
# Self-train the model
self.iragel.self_train(augmented_inputs, improved_outputs)
return improved_outputs, explanation